The Quantum 6j Symbol

Junior Topology Siminar

Mustafa Hajij

The quantum group Uq(sl2)

Definition Let $q \neq 0, 1, -1$ in \mathbb{C} . The quantum group $U_q(sl(2))$ is the algebra over \mathbb{C} , with the unit element 1, generated by E, F, K and K^{-1} , subject to the relations

$$K.K^{-1} = K^{-1}.K = 1$$
 $KE = qEK,$
 $KF = q^{-1}FK$
 $EF - FE = \frac{K^2 - K^{-2}}{q - q^{-1}}$

Definition A $U_q(sl(2))$ -module is a vector space V together with three fixed linear operators E_V , F_V and K_V , which satisfy

$$K_{V}.K_{V}^{-1} = K_{V}^{-1}.K_{V} = 1$$

$$K_{V}E_{V} = qE_{V}K_{V}$$

$$K_{V}F_{V} = q^{-1}F_{V}K_{V}$$

$$E_{V}F_{V} - F_{V}E_{V} = \frac{K_{V}^{2} - K_{V}^{-2}}{q - q^{-1}}$$

Definition Given two $U_q(sl(2))$ -modules V and W, an intertwiner from V to W is a linear map $\phi: V \to W$ such that

$$\phi \circ E_V = E_W \circ \phi$$
$$\phi \circ F_V = F \circ_W \phi$$
$$\phi \circ K_V = K_W \circ \phi.$$

Definition Given two $U_q(sl(2))$ -modules V and W, an intertwiner from V to W is a linear map $\phi: V \to W$ such that

$$\phi \circ E_V = E_W \circ \phi$$
$$\phi \circ F_V = F \circ_W \phi$$
$$\phi \circ K_V = K_W \circ \phi.$$

The set of all morphisms from V to W will be denoted $Hom_{U_q(sl(2))}(V, W)$.

For each $n \ge 0$, let V_n the vector space of homogeneous polynomials of degree n in x and y. This space V_n has a basis the monomials $x^n, x^{n-1}y, ..., xy^{n-1}, y^n$ and this basis show that $dim(V_n) = n + 1$.

For each $n \ge 0$, let V_n the vector space of homogeneous polynomials of degree n in x and y. This space V_n has a basis the monomials $x^n, x^{n-1}y, ..., xy^{n-1}, y^n$ and this basis show that $dim(V_n) = n + 1$.

For each $n \ge 0$, let V_n the vector space of homogeneous polynomials of degree n in x and y. This space V_n has a basis the monomials $x^n, x^{n-1}y, ..., xy^{n-1}, y^n$ and this basis show that $dim(V_n) = n + 1$.

$$E x^{n-j}y^j = [j]x^{n-j+1}y^{j-1} \text{ for } 1 \le j \le n \text{ and } E x^n = 0$$

For each $n \ge 0$, let V_n the vector space of homogeneous polynomials of degree n in x and y. This space V_n has a basis the monomials $x^n, x^{n-1}y, ..., xy^{n-1}, y^n$ and this basis show that $dim(V_n) = n + 1$.

$$E \ x^{n-j}y^j = [j]x^{n-j+1}y^{j-1} \text{ for } 1 \le j \le n \text{ and } E \ x^n = 0$$

 $F \ x^{n-j}y^j = [n-j]x^{n-j-1}y^{j+1} \text{ for } 0 \le j \le n-1 \text{ and } F \ y^n = 0$

For each $n \ge 0$, let V_n the vector space of homogeneous polynomials of degree n in x and y. This space V_n has a basis the monomials $x^n, x^{n-1}y, ..., xy^{n-1}, y^n$ and this basis show that $dim(V_n) = n + 1$.

$$E \ x^{n-j}y^j = [j]x^{n-j+1}y^{j-1} \text{ for } 1 \le j \le n \text{ and } E \ x^n = 0$$

 $F \ x^{n-j}y^j = [n-j]x^{n-j-1}y^{j+1} \text{ for } 0 \le j \le n-1 \text{ and } F \ y^n = 0$
 $K \ x^{n-j}y^j = A^{n-2j}x^{n-j}y^j \quad (A = q^2)$

For each $n \ge 0$, let V_n the vector space of homogeneous polynomials of degree n in x and y. This space V_n has a basis the monomials $x^n, x^{n-1}y, ..., xy^{n-1}, y^n$ and this basis show that $dim(V_n) = n + 1$.

We now make V_n into a $U_q(sl(2))$ —module by specifying the action of E, F, and K.

$$E \ x^{n-j}y^j = [j]x^{n-j+1}y^{j-1} \text{ for } 1 \le j \le n \text{ and } E \ x^n = 0$$

 $F \ x^{n-j}y^j = [n-j]x^{n-j-1}y^{j+1} \text{ for } 0 \le j \le n-1 \text{ and } F \ y^n = 0$
 $K \ x^{n-j}y^j = A^{n-2j}x^{n-j}y^j \quad (A = q^2)$

In order to verify that the action of E, F, and K defines a $U_q(sl(2))$ —module one must check that the $U_q(sl(2))$ are satisfied.

Definition Let V be a $U_q(sl(2))$ -module and λ be a scaler. A vector $v \neq 0$ in V is said to be of weight $\lambda \in \mathbb{C}$ if $Kv = \lambda v$. If we have, in addition, Ev = 0 then v is called a highest weight vector.

Theorem Let V_n be the $U_q(sl(2))$ -module defined above. The following are satisfied

(1) V_n is a simple $U_q(sl(2))$ -module.

- (1) V_n is a simple $U_q(sl(2))$ -module.
- (2) If V is any finite-dimensional simple $U_q(sl(2))$ -module then V is isomorphic to V_n for some n.

- (1) V_n is a simple $U_q(sl(2))$ -module.
- (2) If V is any finite-dimensional simple $U_q(sl(2))$ -module then V is isomorphic to V_n for some n.
- (3) V_n contains a highest weight vector v of weight λ . Also V_n generated, as $U_q(sl(2))$ -module, by this vector.

- (1) V_n is a simple $U_q(sl(2))$ -module.
- (2) If V is any finite-dimensional simple $U_q(sl(2))$ -module then V is isomorphic to V_n for some n.
- (3) V_n contains a highest weight vector v of weight λ . Also V_n generated, as $U_q(sl(2))$ -module, by this vector.
 - (4) Any other highest weight in V_n is a scaler multiple of v and is of weight λ .

- (1) V_n is a simple $U_q(sl(2))$ -module.
- (2) If V is any finite-dimensional simple $U_q(sl(2))$ -module then V is isomorphic to V_n for some n.
- (3) V_n contains a highest weight vector v of weight λ . Also V_n generated, as $U_q(sl(2))$ —module, by this vector.
 - (4) Any other highest weight in V_n is a scaler multiple of v and is of weight
- (5) Two finite dimensional weight vector $U_q(sl(2))$ -modules generated by highest weight vectors of the same weight are isomorphic.

Some notation...

Let $n \ge 1$ and let $j \in \{n, n-2, ..., -n+2, -n\}$. Let $e_{n,j} := x^{\frac{1}{2}(n+j)}y^{\frac{1}{2}(n-j)}$. In this notation $E(e_n, j) = [n-2j]e_{n,j+2}$, $E(e_n, j) = [n-2j]e_{n,j-2}$, and $E(e_n, j) = [n-2j]e_{n,j-2}$, and $E(e_n, j) = [n-2j]e_{n,j-2}$.

Theorem/Definition. Let V and W be $U_q(sl(2))$ —modules. Then there is a $U_q(sl(2))$ —module structure on $V \otimes W$ defined as

Theorem/Definition. Let V and W be $U_q(sl(2))$ —modules. Then there is a $U_q(sl(2))$ —module structure on $V \otimes W$ defined as

$$E(v \otimes w) = Eu \otimes Kv + K^{-1}u \otimes Ev$$

$$F(v \otimes w) = Fu \otimes Kv + K^{-1}u \otimes Fv$$

$$K(v \otimes w) = Kv \otimes Kw$$

Theorem/Definition. Let V and W be $U_q(sl(2))$ —modules. Then there is a $U_q(sl(2))$ —module structure on $V \otimes W$ defined as

$$E(v \otimes w) = Eu \otimes Kv + K^{-1}u \otimes Ev$$

$$F(v \otimes w) = Fu \otimes Kv + K^{-1}u \otimes Fv$$

$$K(v \otimes w) = Kv \otimes Kw$$

One must check that the $U_q(sl(2))$ relations are satisfied.

Theorem/Definition. Let V and W be $U_q(sl(2))$ —modules. Then there is a $U_q(sl(2))$ —module structure on $V \otimes W$ defined as

$$E(v \otimes w) = Eu \otimes Kv + K^{-1}u \otimes Ev$$

$$F(v \otimes w) = Fu \otimes Kv + K^{-1}u \otimes Fv$$

$$K(v \otimes w) = Kv \otimes Kw$$

One must check that the $U_q(sl(2))$ relations are satisfied.

Theorem Let $i, j \geq 0$. Then $V_i \otimes V_j = \bigoplus_{|i-j|+1 \leq k \leq i+j-1} V_k$ where the sum runs over all odd i + j + k.

Define
$$\bigcirc : V \otimes V \to \mathbb{C}$$
 via

Define
$$\bigcap : V \otimes V \to \mathbb{C}$$
 via

$$\bigcap (x \otimes x) = 0$$

$$\bigcap (x \otimes y) = iA$$

$$\bigcap (y \otimes x) = -iA^{-1}$$

$$\bigcap (y \otimes y) = 0$$

Define
$$\bigvee : \mathbb{C} \to V \otimes V$$
 by

$$\sqrt{(1) = iAx \otimes y - iA^{-1}y \otimes x}$$

Lemma (1) The maps \bigcap and \bigcup are intertwiner operators for $U_q(sl(2))$.

Lemma (1) The maps \bigcap and \bigcup are intertwiner operators for $U_q(sl(2))$.

(2) The maps $\bigcirc \circ \bigcirc = \bigcirc : \mathbb{C} \to \mathbb{C}$ is multiplication by $-A^2 - A^{-2}$.

Lemma (1) The maps \bigcap and \bigvee are intertwiner operators for $U_q(sl(2))$.

(2) The maps
$$\bigcirc \circ \bigcirc = \bigcirc : \mathbb{C} \to \mathbb{C}$$
 is multiplication by $-A^2 - A^{-2}$.

(3) The maps
$$\bigvee \circ \bigcap = \bigvee : V \otimes V \to V \otimes V$$
 is given by

$$\bigvee (x \otimes x) = \bigvee (y \otimes y) = 0$$

$$(x \otimes y) = -qx \otimes y + y \otimes x$$

$$\bigvee (y \otimes x) = x \otimes y - q^{-1}y \otimes x$$

Define a intertwiner map
$$: V \otimes V \to V \otimes V \text{ as follows}$$

$$:= A[\ \ \] + A^{-1}[\ \ \]$$

A representation of Bn

Recall the the braid group is given by generators and relations as follows $B_n = \langle b_1, ..., b_{n-1} | b_i b_j = b_i b_j$ if $|i-j| \geq 2, b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$ if i = 1, 2, ..., n-2 >

A representation of Bn

Recall the the braid group is given by generators and relations as follows $B_n = \langle b_1, ..., b_{n-1} | b_i b_j = b_i b_j$ if $|i - j| \ge 2, b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$ if i = 1, 2, ..., n-2 >

Theorem There is a representation r_A of B_n on $V^{\otimes n}$ defined by

$$r_A(b_n) = \begin{vmatrix} \mathbf{i} & \mathbf{i+1} \\ \cdots & \begin{vmatrix} \mathbf{i} & \mathbf{i+1} \\ \cdots & \end{vmatrix}$$

for i = 1, 2, ..., n - 1.

The Temperly-Lieb algebra

The Temperley-Lieb Algebra, denoted by $TL_n(\delta)$ where $\delta = -A^2 - A^{-2}$, is the unital $\mathbb{C}[A, A^{-1}]$ algebra of $U_q(sl(2))$ intertwining maps between n-fold tensor powers of the fundamental representation V. In other words

$$TL_n(\delta) = Hom_{U_q(sl(2))}(V^{\otimes n}, V^{\otimes n})$$

The Temperly-Lieb algebra

The Temperley-Lieb Algebra, denoted by $TL_n(\delta)$ where $\delta = -A^2 - A^{-2}$, is the unital $\mathbb{C}[A, A^{-1}]$ algebra of $U_q(sl(2))$ intertwining maps between n-fold tensor powers of the fundamental representation V. In other words

$$TL_n(\delta) = Hom_{U_q(sl(2))}(V^{\otimes n}, V^{\otimes n})$$

This algebra can be realized as the unital $\mathbb{C}[A, A^{-1}]$ algebra generated by e_i , $1 \le i \le n-1$ subject to the relations $e_i e_j = e_j e_i$ if $|i-j| \ge 2$, $e_i e_{i\pm 1} e_i = e_i$, and $e_i^2 = -[2]e_i$.

The Jones-Wenztl projectors

via the recursive relation:

Define the Jones-Wenztl projector

via the recursive relation:

Theorem Let $V^{\otimes n} \to V^{\otimes n}$ be the intertwining map defined

above, then satisfies the following:

Theorem Let $N \otimes n \to V \otimes n$ be the intertwining map defined

above, then satisfies the following:

(2)
$$e_i = e_i \circ e_i = 0$$

(3) is a projector to the subspace $V^{n+1} \subset V^{\otimes n}$.

More morphisms between Uq(sl2) -modules

More morphisms between Uq(sl2) -modules

More morphisms between Uq(sl2) -modules

Maps between V_n and the n-fold tensor of the V₂

Definition Define the map $\phi_n: V_n \to V^{\otimes n}$ by

$$\phi_n(e_{n,j}) = A^{1/4(n+j)(n-j)} \underbrace{ \begin{array}{c} & \\ & \\ \end{array}}_{n} (x^{\otimes \frac{1}{2}(n+j)} \otimes y^{\otimes \frac{1}{2}(n-j)})$$

here we assume that $[n] \neq 0$.

Maps between V_n and the n-fold tensor of the V₂

Definition Define the map $\phi_n: V_n \to V^{\otimes n}$ by

$$\phi_n(e_{n,j}) = A^{1/4(n+j)(n-j)} \underbrace{ \begin{array}{c} \\ \\ \end{array} }_{\text{n}} (x^{\otimes \frac{1}{2}(n+j)} \otimes y^{\otimes \frac{1}{2}(n-j)})$$

here we assume that $[n] \neq 0$.

Definition Let $n \geq 0$. Define a map $\mu_j : V^{\otimes n} \to V_n$ via

$$\mu_j(x_1 \otimes \ldots \otimes x_n) = x_1 \cdot x_2 \cdot \ldots \cdot x_n$$

where x_i are either x or y and the multiplication on the right occurs in the ring $\mathbb{C}[x,y]/(xy=qyx)$

Suppose that (n, m, j) are admissible triple then the map $V^{\otimes j} \rightarrow$ Theorem

 $V^{\otimes n} \otimes V^{\otimes m}$ defined by

is a $U_q(sl(2))$ intertwiner. Moreover, The vector space $Hom_{U_q(sl(2))}(V_j, V_n \otimes$

 V_m) is one dimensional and it is generated by the map $\mu_n \otimes \mu_m \circ \phi_j$.

Theorem Suppose that (n, m, j) are admissible triple then the map

defined by

Theorem Suppose that (n, m, j) are admissible triple then the map

defined by

Theorem Suppose that (n, m, j) are admissible triple then the map

defined by

is a $U_q(sl(2))$ intertwiner. Moreover, the vector space $Hom_{U_q(sl(2))}(V_k, V_m \otimes V_n \otimes V_l)$ is generated by the basis consists of the maps

$$\{\mu_m \otimes \ \mu_n \otimes \mu_l \circ \bigvee_{\mathbf{k}}^{\mathbf{m}} \bigcap_{\mathbf{k}}^{\mathbf{n}} \circ \phi k\}$$

where the indices j and k range over all admissible (n, l, j) and (m, j, k).

with the appropriate admissible colors.

The quantum 6j Symbol

Define the quantum 6j-symbol to be the coefficient $\left\{\begin{array}{ccc} m & n & a \\ l & k & j \end{array}\right\}$ in the following equation

$$\mu_m \otimes \mu_n \otimes \mu_l \circ \bigvee_{\mathbf{k}}^{\mathbf{j}} \circ \phi k = \sum_{\substack{admissible \ colors}} \left\{ \begin{array}{ccc} m & n & a \\ l & k & j \end{array} \right\} \ \mu_m \otimes \mu_n \otimes \mu_l \circ \bigvee_{\mathbf{b}}^{\mathbf{m}} \circ \phi k$$

References

- [1] S. Carter, D. Flath, M. Saito, The classical nad quantum 6j symbols, Princton University Press, 1995.
 - [2] C. Kassel, Quantum Groups, Springer-Verlag, 1995.
- [3] V. Mazorchuk, Lectures on Sl_2(C)-modules, Impersial College Press, 2010.
 - [4] T. Ohtsuki, Quantum invariants, World Scientific, 2002.

Thank You