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The quantum group Uq(sl2)

Definition Let ¢ # 0,1, —1 in C.The quantum group U,(sl(2)) is the algebra
over C, with the unit element 1, generated by E, F. K and K1, subject to the
relations

KK = K'K=1
KE = gEK,
KF = q¢'FK

K2_K—2
EF —FE =

q—q!




e
Uqg(slz)-modules

Definition A U,(sl(2))—module is a  vector space V' together with three
fized linear operators Ey-, Fy, and K-, which satisfy

Ky K7t = Ki'Ky=1

Ky Eyvy = qEvKy

KyFy = ¢ 'FvKy
K2 —K.~°

EvEF, — FyEy = —

q9—49q




e
Uq(slz)-modules

Definition  Gien two U,(sl(2))—modules V' and W ,an intertwiner from V
to W 1s a linear map ¢ : V- — W such that

GoEy =Ewoo
poly =Fowo
¢ o Ky = Ky o ¢.




e
Uqg(slz)-modules

Definition  Gien two U,(sl(2))—modules V' and W ,an intertwiner from V
to W 1s a linear map ¢ : V- — W such that

poEy =Ewog
oo Fy = Fow o
6o Ky = K o 0.
The set of all morphisms from V' to W will be denoted Homy, (s 2))(V, W),




e
Uqg(slz)-modules

For each n > 0, let V}, the vector space of homogeneous polynomials of degree

n in = and y. This space V,, has a basis the monomials =", 2" 1y, ... zy" L. y"

and this basis show that dim(V,,) = n + 1.
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Uq(slz)-modules

For each n > 0, let V), the vector space of homogeneous polynomials of degree
n in z and y. This space V,, has a basis the monomials ™, 2" 1y, ..., zy" "1, y"
and this basis show that dim(V,,) = n + 1.

We now make V,, into a U,(sl(2))—module by specitying the action of E. F.
and K.

Exv iyl =[jlan 7Tyt for1<j<nand E 2" =0

F x" Jy In — ]”J1y3+1f0r0<3<n—1a11dFy =0

K 2"yl = An= 2y (A = ¢?)

In order to verify that the action of E, F, and K defines a U,(sl(2))—module
one must check that the U,(sl(2)) are satisfied.



e
Uqg(slz)-modules

Definition  Let V' be a U,(sl(2))—module and \ be a scaler. A vector v # 0
in V' 1s sard to be of weight X € C +f Kv = Av. If we have. in addition., Ev =0

then v 1s called a highest weight vector.
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Theorem  Let V), be the U,(sl(2))—module defined above. The following are
satisfied
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Uq(slz)-simple modules

Theorem  Let V), be the U,(sl(2))—module defined above. The following are
satisfied
(1) V,, is a stmple U,(sl(2))—module.
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Uq(sl2)-simple modules

Theorem  Let V), be the U,(sl(2))—module defined above. The following are
satisfied

(1) V,, is a simple U,(sl(2))—module.

(2) If V' 1s any finite-dimensional simple U,(sl(2))—module then V s iso-
morphic to V,, for some n.

(3) V,, contains a highest weight vector v of weight \. AlsoV,, generated. as
U,(sl(2))—module. by this vector.

(4) Any other highest weight in V,, 1s a scaler multiple of v and s of werght
A.

(5) Two finite dimensional weight vector U,(sl(2))—modules generated by
highest weight vectors of the same weight are isomorphac.



e
Some notation..

Letn > landlet j € {n,n—2,...,—n+2,—n}. Let e,,; := 22 () yz(n=3) In
this notation E €,,,; = [n—2jlen.j+2. F €n,; = [n—2jlen,j—2, and Ke,,; = Ale,,;




D
Module structure on tensor product

Theorem/Definition. Let V' and T be U,(sl(2))—modules. Then there
is a U,(sl(2))—module structure on V' @ 11" defined as




S
Module structure on tensor product

Theorem/Definition. Let V' and T be U,(sl(2))—modules. Then there
is a U,(sl(2))—module structure on V' @ 11" defined as

Evw) = Fu®@ Kv+ K 'u® Ev
Fvw) = Fu® Kv+ K lu® Fo
Kovow) = Kv® Kuw




Module structure on tensor product

Theorem/Definition. Let V' and W be U,(s/(2))—modules. Then there
is a U,(sl(2))—module structure on V @ TV defined as

Fv@w) = Fu® Kv+ K lu® Ev
Flo@w) = Fu® Kv+ K lu® Fo
Kov@w) = Kuv® Kw

One must check that the U,(s{(2)) relations are satisfied.



Module structure on tensor product

Theorem/Definition. Let V' and W be U,(s/(2))—modules. Then there
is a U,(sl(2))—module structure on V @ TV defined as

Fv@w) = Fu® Kv+ K lu® Ev
Flo@w) = Fu® Kv+ K lu® Fo
Kov@w) = Kuv® Kw

One must check that the U,(s{(2)) relations are satisfied.

Theorem  Let 2,5 =2 0. Then V; @ V; = B)i_j|+1<k<i+j—1Vk where the sum
runs over all odd 1+ 75 + k.
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Let A# 0 € C be fixed and let V' := V| = span{z, y} be the U,(sl(2))—module
defined eariler.
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defined eariler.
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Some morphisms between modules of Uq(sl2)

Let A# 0 € C be fixed and let V' := V| = span{z, y} be the U,(sl(2))—module
defined eariler.

DeﬁneU:CaV@V by

U(l) — Az @y —iA ly @«
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Some morphisms between modules of Uq(sl2)

Lemma  (1)The maps /\ and U are intertwiner operators for U,(sl(2)).
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Some morphisms between modules of Uq(sl2)

Lemma  (1)The maps /\ and U are intertwiner operators for U,(sl(2)).

(2) The maps /\o U = O : C — C is multiplication by —A* — A2,




e
Some morphisms between modules of Uq(sl2)

Lemma  (1)The maps /\ and U are intertwiner operators for U,(sl(2)).

(2) The maps /\o U = O : C — C s multiplication by —A* — A2,
(3) The maps Uo /\ = >< VRV =V eV s given by

U(ff:@m) = U(y@w)zﬂ

) )
X(ﬂ?@y) = —@ERy+yQxz
e = rey-qlyec




Some morphisms between modules of Uq(sl2)

Define a intertwiner map /\/ VRV =V RV as follows

/a4 g
/\ XA

®‘]




D
A representation of Bn

Recall the the braid group 1s given by generators and relations as follows
B, =< by, ....by_1| bjb; = b;b; if |i — j| > 2,b;b;41b; = bj1b;biyq it @ =
1.2,....n—2 >




O
A representation of Bn

Recall the the braid group 1s given by generators and relations as follows
B, =< by, ....by_1| bjb; = b;b; if |i — j| > 2,b;b;41b; = bj1b;biyq it @ =
1.2,....n—2 >

Theorem  There is a representation r4 of B, on V" defined by

I i+1

s o] N |-
/

fore=1,2,....n—1.




e
The Temperly-Lieb algebra

The Temperley-Lieb Algebra, denoted by T'L,,(6) where § = —A% — A~2,
is the unital C[A, A!] algebra of U,(sl(2)) intertwining maps between n-fold
tensor powers of the fundamental representation V. In other words

TLn((S) p— HOqu (3.{(2)) (V®n, V®n)




The Temperly-Lieb algebra

The Temperley-Lieb Algebra, denoted by 7L, (§) where § = —A% — A™2,
is the unital C[A, A!] algebra of U,(sl(2)) intertwining maps between n-fold
tensor powers of the fundamental representation V. In other words

TLH (5) — HO?TLE&;(SI(?)) (I-"—@?lz Is"@'n)

This algebra can be realized as the unital C[A, A™!] algebra generated by
e;, 1 <i <n—1 subject to the relations e;e; = eje; if |t — j| > 2, e;e;01€; = €5,
and e? = —[2]e;.



D
The Jones-Wenztl projectors

Define the Jones-Wenztl projector " € TL,(6) = Homy, (s1(2)) (VE", VE)

via the recursive relation:




The Jones-Wenztl projectors

Define the Jones-Wenztl projector n cTL,(0)=H oMy, (si(2)) (Ven jon)

via the recursive relation:

n _ n-1 ® | +[n—1]/[n]( n-1 ® |oen—10 n-1 ® |)




D
The Jones-Wenztl projectors

Theorem  Let : Ve VO pe the intertwining map defined

above, then

satisfies the following:




e
The Jones-Wenztl projectors

Theorem  Let : Ve VO pe the intertwining map defined

above, then satisfies the following:

(1) n o n _ n




S
The Jones-Wenztl projectors

Theorem  Let : Ve VO pe the intertwining map defined

above, then satisfies the following:

(1) n o n _ n

(2) n o€;=€;0 n — 0




The Jones-Wenztl projectors

Theorem  Let " : VO VOn be the intertwining map defined

above. then satisfies the following:

(1) n o n — n

(2) n o0 €;—=€; o0 n —0

(3) " is a projector to the subspace V1 C Vo,




O
More morphisms between Uq(slz) -modules

n—1

1
Definition Let U = U C -V V. Assume U we define

recursivly to be the composition
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More morphisms between Uq(slz) -modules

n—1

1
Definition Let U = U C -V V. Assume U we define

recursivly to be the composition

n

U L C — VO2A—) 28(n-1) o ¢ g B(r-1) 18UBL §,@2n




D
More morphisms between Uq(slz) -modules

n—1

1
Definition Let U = U C -V V. Assume U we define

recursivly to be the composition

n

U L C — VO2A—) 28(n-1) o ¢ g B(r-1) 18UBL §,@2n

n

The map /\ 1s defined dually.




e
Maps between V. and the n-fold tensor of the V.

Definition Define the map ¢, : V,, — V& by

O, (en) = AL/A(n+j)(n—j) n ($®%(n+j) 2 y®%(”_j))

here we assume that [n] # 0.




e
Maps between V. and the n-fold tensor of the V.

Definition Define the map ¢, : V,, — V& by

O, (en) = AL/4(n+5)(n—4) n ($®%(n+j) ? y®%(”’_j))

here we assume that [n] # 0.

Definition Let n > 0. Define a map p; : Ven V. via

(21 @ .. @) =21 - Tae - Ty,

where x; are either x or y and the multiplication on the right occurs in the
ring Cla, y|/(zy = qyz)




Towards defining the 6j Symbol

Theorem Suppose that (n,m, j) are admissible triple then the map V®i
J
VO @ VO™ defined by
n m 1/2(n+j—m) 1/2(m+j—m)
1/2(m~+n—j)
J

is a Uy(sl(2)) intertwiner. Moreover, The vector space Homy (s 2))(V;, V, @

Vin) ts one dimensional and it is generated by the map i, @ [i,,© 0.




Towards defining the 6j Symbol

Theorem Suppose that (n,m,j) are admissible triple then the map

m n 1

defined by




Towards defining the 6j Symbol

Theorem Suppose that (n,m,j) are admissible triple then the map

m n 1

a Y )OY
f ] k

defined by




Towards defining the 6j Symbol

Theorem Suppose that (n,m,j) are admissible triple then the map

m n 1

Y

is a Uy(sl(2)) intertwiner. Moreover, the vector space Homy, (si(2))(Vi, Vin @
V. @ V7) is generated by the basis consists of the maps

defined by

m n |

{tm ® 1, @ py 0 ! ook}

where the indices i and k range over all admissible (n.l.1)and (m. 1. k).




Towards defining the 6j Symbol

m n 1
a
One could show similirly that has a basis
b
m n 1
o
{ @ i @ py 0 . o ok}

with the appropriate admissible colors.




The quantum 6j Symbol

Define the quantum 6j-symbol to be the coefficient { ?? : ;’ } in the
tollowing equation
- 1 1 m n 1
' m n o a a
Hon @ fhn @10 D ook = > { Lok } Hon® Hn @p10 ook

k admissible colors
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