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Let A and A’ be k-algebras. There is an k-algebra stru(':ture on the tensor
product A® A’. Multiplication is given by (m®@m’)(1@7 g4’ ®1) and the unit
is given by the composition of u ® »’ with the canonical isomorphism k£ = k& k.
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Coalgebras

A coalgebra over k is a k-vector space C' with two linear maps A : €' — C®C
and € : C' — k such that
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Bialgebras

A k-module A having both algebra and coalgebra structures is called a k-
bialgebra if these structures are compatible with each other in the sense that the
linear maps A : ¢ — C® C and € : C' — k are in fact morphisms of algebras.
Or, what is equivalent, the linear maps m : A ® A — A and u : kK — A are
morphisms of coalgebras.




Representations o! Bia|ge!ras

The module structure of a representation of a bialgebra A is its structure as
a module for the underlying associative algebra.




Representations of Bialgebras

The module structure of a representation of a bialgebra A is its structure as
a module for the underlying associative algebra.

In other words it is a vector space V' together with a bilinear map AxV — V
defined by (a,v) — av such that ab(v) = (ab)v and 1lv = v for all a,b in A and
vin V.




Representations of Bialgebras

The module structure of a representation of a bialgebra A is its structure as
a module for the underlying associative algebra.

In other words it is a vector space V' together with a bilinear map AxV — V
defined by (a,v) — av such that ab(v) = (ab)v and 1lv = v for all a,b in A and
vin V.

We denote the category of A-modules by A — Mod .
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Representations of Bialgebras

The fact that A is a bialgebra allows us to equip the cateogry A — Mod with
additional structure.

Namely, if U and V are A-modules then the coproduct allows us to equip
U ® V with an A-module structure by a(u ® v) = A(a)(u ® v).

Furthermore, the counit equips k£ with an A-module structure by ax = ¢(a)x.

In additional to the previous two structure we also have : For three A-
modules U, V, W we have the canonical k-linear isomorphisms

UWV)eW = U (VeW)
LV = V=VQk

Finally, if f: V — V' 0 and g: W — W' are two A-linear homomorphisms,
then the map f@¢g: V@V’ — W ®@ W’ 1s also A-linear.
Thus we have the following lemma.

Lemma 1 Let A be a bialgebra. The category of A-modules 1s a monoidal cate-
gory.



Braided Categories

A braiding in a monoidal category C' consists of family of isomorphisms
c={cvw :VRU — U®V} where V. TV run over all objects of C, such that
for any three objects U, V, 117, we have




Braided Categories

A braiding in a monoidal category C' consists of family of isomorphisms
c={cvw :VRU — U®V} where V. TV run over all objects of C, such that
for any three objects U, V, 117, we have

covver = (id, ®cuw)(coy @ idw)

cveuw = (cuw ®tdy)(dy @ cyw)




Braided Categories

A braiding in a monoidal category C' consists of family of isomorphisms
c={cvw :VRU — U®V} where V. TV run over all objects of C, such that
for any three objects U, V, 117, we have

covver = (id, ®cuw)(coy @ idw)

cveuw = (cuw ®tdy)(dy @ cyw)

and for any morphisms f:V — V' 0and g: W — W', we have

(9@ flevw =cvrw (f ®g)
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Quasi-Triangular Bialgebras

Definition Let A be a k-bialgebra. A is called a quasi-triangular bialgebra if
there exists an ifnvm tableA element R€ A® A satisfying
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Definition Let A be a k-bialgebra. A is called a quasi-triangular bialgebra if
there exists an ifnvm tableA element R€ A® A satisfying

(PoA)(z) = RA(z)R™!

(A@Zd)( ) ngﬁ)zg

(id @ A)(R) = Riz Ry

where the map P is the permutation given by P(x @ y) =y @ x and we pul

ng — R® 1, RQS —1QR and 1?13 = Zaﬂ}@l(}@@z putting R = Zo{z(}éﬁ,&

R is usually called the universal R-matrix of the quasi-triangular bialgebra

(A, R).

Theorem  Let A be a bialgebra. The category of A-modules 1s braided 1ff A
15 quasi-triangular bialgebra.
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A bialgebra whose category of representations is braided is called a braided
bialgebra.




R-matrices from Braided Bialgebras

A bialgebra whose category of representations is braided is called a braided
bialgebra.

Theorem  Let A be a braided bialgebra and let ¢ be a braiding in A-Mod.
Then for all A-modules U,V and W we have

(cv.w®idy ) (idy @(cow)((cu,yv @idw ) = (idw @cuv)((cow @idy ) (idy @(cv,w)




Braid group representaions..

Suppose that A is any braided bialgebra with braiding ¢ . Suppose further
that 17 is any A-module. Define ¢; =1 ® ... @ cy,y @ ... ® 1, an automorphism
of the n-fold tensor product V®™, where the cy,y term occupies the ith and
(z + 1)st places. Using this we obtain a representation B, — GL(1V%™) given
by o; — ¢;.




Burau Representation

Let ¢ be a non-zero complex number and let b; be the n — 1 X n — 1 matrices
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2 < i <n — 2 where the diagonal —t is in the 7 — 7 position. One might

easﬂy check that bibﬂ_lbfg = bf,;_|_1bf,;b?;+1 and bf,;bj = bjbag, |?, — j| Z 2

One can send o; to b; and get the so-called reduced Burau representation of

B,.
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The bialgebra Uq(sl2)

Definition  Let ¢ # 0.1. —1 in C.The quantum group U,(sl(2)) is the algebra
over C, with the unit element 1, generated by E. F. K and K1, subject to the
relations
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The bialgebra Uq(sl2)

Definition  Let ¢ # 0.1. —1 in C.The quantum group U,(sl(2)) is the algebra
over C, with the unit element 1, generated by E. F. K and K1, subject to the
relations

KK = K 'K=1
KE = gEK,
KF = ¢ 'FK

K- K1
EF - FE = -
q—q-

One could equip Uq(sl(Z)) with a bialgebra structure. Further, one could

check that the element R = g~ 5 (Z qﬂ(nz_ = (1[;?2!)” E"®F™) equips Ugy(sl(2))
n=>0

with a quasi-triangular bialgebra structure.
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Fix a scaler A # 0. Consider the infinite-dimensional C—vector space V()
with the basis {v;};en. For [ >0

Kv, = ¢ vy
Fvy = v
Ev, = [’E]q[)‘L +1-— l]q'vl—l

Let ¢y-(1),17(n) be the the R-matrix obtain from the universal R matrix and
the representation defined above.

Let (V(\)®"); be the n-dimensional subspace of V€™ generated by {ug, @1, ..., %, }
where 1; =19 @ ... @ v1 @ ... ® vg. the vector v; occurring in the ** position.

_ 1,2

(po)iig = q 22

R _1xp—2) [~ _ X
(poi)ii; = ¢~ 22 [’U@H + (g = qA)’U@']
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So the representation B,, — GL((V()\)@"”‘) restricts to B,, — GL((V()\)@"”‘)l)
Let 7 C (V(A)®™); be the k-vector subspace generated by {u;}1<i<n—1
where

)\A ~
Ui = q Ui — Uil

After rescaling of the basis {u; }1<i<,—1 one could define the representation
on Wy via

(proi)u; = u; for j#£i—1.4i+1
(p1Oi) Uiz = Ui + Uisy
(proi)u; = —qu;

(pro)ug =u; 1 + qQA U



Burau Representation from Uq(sl2)

So the representation B,, — GL((V()\)@’”) restricts to B,, — GL((V()\)@”)l)
Let 7 C (V(A)®™); be the k-vector subspace generated by {u;}1<i<n—1
where

AA ~
Ui = q Ui — Uil

After rescaling of the basis {u; }1<i<,—1 one could define the representation
on Wy via

(proi)u; = u; for j#£i—1.4i+1
(P10 )it = Ui + Uiy

(proi)u; = —qu;
(pr1oi)uiy =i+ ¢ u;

Setting ¢t = ¢** we have the reduced Burau representation
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