=

Hecke Algebra Representation of Braid Groups
and Links Polynomial
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The Braid Group

Let Bn be the set of all equivalence classes of n-braids.
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Generators and Relations for Bs
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A presentation for The Braid Group

B, =(01,...;0n_1|0:0,410; = 0i410,0,41,1=1,2,...n—2,0,0; = 0,0, |1 — j| > 2)

Examples

B2 = (6'1 I )1
By = (01, 02 | 010201 = 020102 ),
B: = (01, 02, 03 | 0103 = 0301, 010201 = 090103, 020302 = 030303 )



A presentation for The Braid Group

B, =(01,..,0n-1|0:0,410, = 0;410,0,11,1 =1,2,...n—2,0,0; =00, |t —j| > 2)

Recall the following simple algebra theorem

Suppose that G =< S|t = lL,all t € T' >, and if G5 is a group of matrices.
Suppose that Sy C G5, < Sy >= G. and s +— s’ isa function from Sy onto S,.
Suppose further that the generators s’ € Sy satisfy all the relations t = 1,t € T,
in the sense that if each s € S; is replaced by the corresponding s’ € Ss in each
word t€ T, then the result is an element ¢’ € G5 with ¢’ € G5 with ' = 1. Then
there is a homomorphism from G4 onto Gs.



The closure of a braid
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Theorem (Alexander) : Any tame oriented link is isotopic to the closure of
some braid.



The closure of a braid

A Markov move of type I is changing o € By, to faf~ € B, for any 8 € B,.

A Markov move of type II is changing o € B,, to fo*! € B,,11, or the
inverse of this operation.

'The representation of a link LL as a closed braid is highly non-unique.
If « € B,, and 8 € B,, have isotopic closures then there is a finite sequence
of Markov moves if type I and // which takes a to S3.
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Some Observations

The representation of a link L as a closed braid is highly non-unique.
If « € B, and 8 € B,, have isotopic closures then there is a finite sequence
of Markov moves if type I and II which takes a to 3.

In general if we have a function 7 : B,, — X, where X is some set and we
want to check that this function induces an invariant for knots then it is enough
to check that this fucntion is invariant under Marcov Moves I and II.

Note that Marcov II is satisfied by two well known functions, namely the
trace and the determinant of a matrix so it is natural to think of mapping B,
to some set of matrices to get a knot invariant.



The Burau Representation

* Let t be any non zero complex number. Consider the (n-1) square matrices

— t 0 1
0 1
. —1 1 1 -t 0
1~ l ] b!-= 0 — 1t O
: 0O -1 1
0 1 1 1
1
0
1
bn—l_
1 —1¢
0 0 -t

2 <i < n — 2 where the diagonal — t is in the i — i position.

Then it is east to see that there matrices satisfy the relations:

b;b;11b; = b;11b;b; 14 and b;ibir1 = big1b; i —j] =2



So...

Define the representation 7 : B, — GL,,_1(C)

1 2 i i+1 n

‘V\ Y

For example 050,05 Lin B; acts on C? by:

K 202010'2_1 Iﬁ\bzblbgl




Example of some representations
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/R’@entation of the symmetric
group Sn

Let G =S, and let {e1, e, ..., e,} be the standard basis for C".

Let S, act on C” in the natural way: if
V =161 + -+ pép,

then
VT = (1€x(1) + e+ U n€r(p)-

For instance, if n = 4, then under this representation,

(143) —

o = O O
o o = O
= o O O
o o O =



! The Way no.23847294879 to Compute The

Alexander Polynomial

Ifac B,

det(] — w(av))
1+¢4+ . 401

Where a 1s the closure of the .

= Ala)

Note that det(] — m(a)) 13 defined using the determinant which allows us to
prove the invariance of this expression under Marcov Move L
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Example...The Trefoil

det(I—m( é )) = det(I—7(03)) = det(1—(—t3)) = 1+t = (1+¢) (> —t+1) = (1+t)A( S
%




Another Example

Let L be a digjoin union of n circles, then using the fundamental group of
the complement of the knot we get

A(L)=0

On the other hand we see using Burau representation

det(I —w(o2)) = det il;w( \ \/\))ﬂ‘ﬂ([é H_H j])

—t
= det_ﬂ 1_t]—[]
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_ Algebra Given by Generators and
Relations

Suppose that A is an algebra over a field IX generated by a set
of elements {x1,...,xq}. This means that every element of A can be written
as a linear combination of products of the x;:

where ¢ € K., eg; > 0.

There may be many relations that the xi satisfy which one must know in
order to use the generators for computation in A.



Some Examples

Example Consider the complex numbers C as an algebra over R. Since
i? = —1, we know that C is generated by the single element i, and indeed this
relation suffices to describe C in terms of the generator i:

C ~ R[]/(i* + 1).

Quotienting out by the ideal generated by i>+1 is equivalent to the relation
i2 = —1 holding in the quotient algebra.

Example The (real) Quaternions is the four-dimensional vector space
over R is generated by the formal elements {1.,1i,j.k}. so any element in H
looks like al + bi + ¢j) + dk and this algebra is subject to the relations

==k =-1

ijk = —1

which means that when we multiply two elements we need ro respect those
relations and apply replace them when they show up.
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Hecke Algebra H(qg,n)

generators
€1>82:-++5 81> and

relations

£i8ir18i — 8i+18i8i+1>
gi€; = 8;8; lfll—]l > 2
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Hecke Algebra Representation

We can extend the representation m, 7(o;) = g;, to H(g, n) in a natural way.
So we have a representaion of The Hecke algebra H(q,n).



The Key Theorem the

TueoreM  (Ocneanu ). For every z € C there is a linear trace tr on
*_1H(gq, n) uniquely defined by

1) tr(ab) = tr(ba).

2) tr(1) = 1.

3) tr(xg) = z tr(x) for x € H(g, n).

The key observation here is the similarity between the
condition 3 in the key theorem and the Markov move II.

Property 3 will be used to prove the that the trace is invariant
under Markov move 2.



Two Variable Invariant

Definition The two-variable invariant X, (g, A) of the oriented link L
is the function

Y n—1
%)) = [~ | R

where a € B, is any braid with & = L, e being the exponent sum of « as a
word on the o,’s and 7 the representation of B, in H(q, n), o, — g,.



Example..again the Trefoil

Example The (right-handed) trefoil is given by the closure of the braid
o, € B,. Thus

- A 3
%) = |- s |ORaed)

By the defining relations of the Hecke algebra we have

gi=(q>—q + g, + g(g — 1) so that

1 —
(1 — fq)q(q - 1))

X,(q. ) = (
=M1+ ¢* - Aq?)

= (Aa)((Va = 1//a)" +2 - Aq)

= (2¢% — t*) + t%2

Aﬂ—kﬂ)“z

e | (CR Ry



Some Properties

This invariant respects connected sum.
It is sensitive to the orientation of the link.
Can distinguish between the knot and its Mirror image.

The Alexander polynomial is the a special case from this polynomial by
setting

A(L) = Xz.(t,1/%)

The Hecke algebra representation of Bn can be used to get
representations of subgroups of the mapping class groups which can be
extended in some cases to the whole group.
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