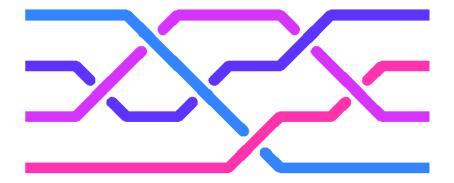
Hecke Algebra Representation of Braid Groups and Links Polynomial

Mustafa Hajij Geometric Topology Spring 2010

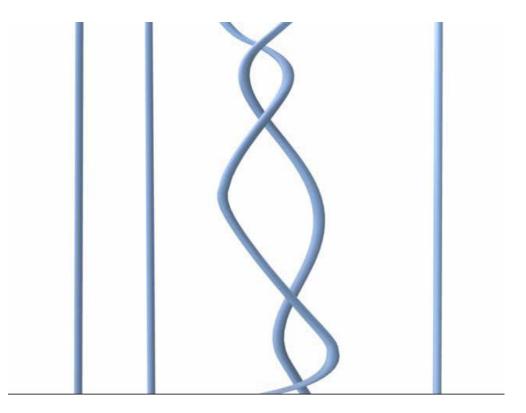
Braids



A Braid Diagram

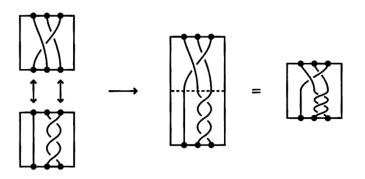
The Braid Group

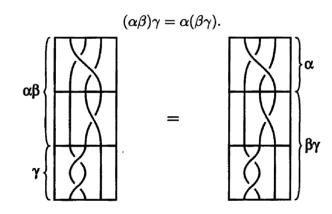
Let B_n be the set of all equivalence classes of n-braids.

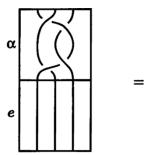


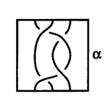
The Braid Group

It is possible to define a product in the obvious way on this set.



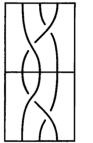






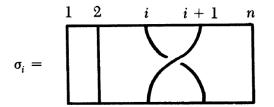
 $\alpha^*\alpha = e.$

=



Generators and Relations for Bn

Generators :



Relations :

A presentation for The Braid Group

 $B_n = \langle \sigma_1, ..., \sigma_{n-1} | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, i = 1, 2, ..., n-2, \sigma_i \sigma_j = \sigma_j \sigma_i, |i-j| \ge 2 \rangle$

Examples

$$B_{2} = (\sigma_{1} | - - - -),$$

$$B_{3} = (\sigma_{1}, \sigma_{2} | \sigma_{1}\sigma_{2}\sigma_{1} = \sigma_{2}\sigma_{1}\sigma_{2}),$$

$$B_{4} = (\sigma_{1}, \sigma_{2}, \sigma_{3} | \sigma_{1}\sigma_{3} = \sigma_{3}\sigma_{1}, \sigma_{1}\sigma_{2}\sigma_{1} = \sigma_{2}\sigma_{1}\sigma_{2}, \sigma_{2}\sigma_{3}\sigma_{2} = \sigma_{3}\sigma_{2}\sigma_{3})$$

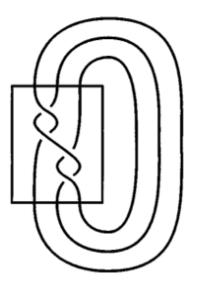
A presentation for The Braid Group

$$B_n = \langle \sigma_1, ..., \sigma_{n-1} | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, i = 1, 2, ..., n-2, \sigma_i \sigma_j = \sigma_j \sigma_i, |i-j| \ge 2 \rangle$$

Recall the following simple algebra theorem

Suppose that $G = \langle S_1 | t = 1$, all $t \in T \rangle$, and if G_2 is a group of matrices. Suppose that $S_2 \subset G_2$, $\langle S_2 \rangle = G$, and $s \mapsto s'$ is a function from S_1 onto S_2 . Suppose further that the generators $s' \in S_2$ satisfy all the relations $t = 1, t \in T$, in the sense that if each $s \in S_1$ is replaced by the corresponding $s' \in S_2$ in each word $t \in T$, then the result is an element $t' \in G_2$ with $t' \in G_2$ with t' = 1. Then there is a homomorphism from G_1 onto G_2 .

The closure of a braid



Theorem (Alexander) : Any tame oriented link is isotopic to the closure of some braid.

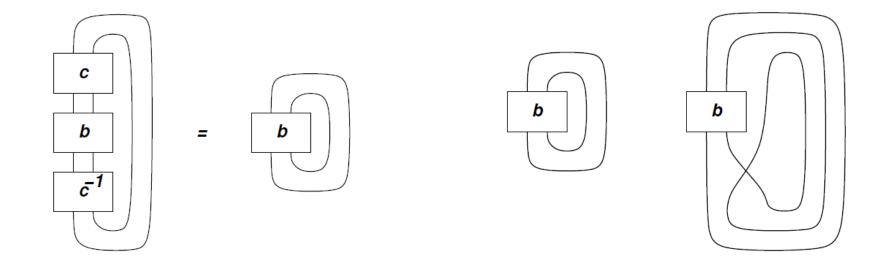
The closure of a braid

A Markov move of type I is changing $\alpha \in B_n$ to $\beta \alpha \beta^{-1} \in B_n$ for any $\beta \in B_n$.

A Markov move of type II is changing $\alpha \in B_n$ to $\beta \sigma_n^{\pm 1} \in B_{n+1}$, or the inverse of this operation.

The representation of a link L as a closed braid is highly non-unique. If $\alpha \in B_n$ and $\beta \in B_m$ have isotopic closures then there is a finite sequence of Markov moves if type I and II which takes α to β .

Marcov Moves I and II



Marcov Move I

Marcov Move II

Some Observations

The representation of a link L as a closed braid is highly non-unique. If $\alpha \in B_n$ and $\beta \in B_m$ have isotopic closures then there is a finite sequence of Markov moves if type I and II which takes α to β .

In general if we have a function $\pi: B_n \to X$, where X is some set and we want to check that this function induces an invariant for knots then it is enough to check that this function is invariant under Marcov Moves I and II.

Note that Marcov II is satisfied by two well known functions, namely the trace and the determinant of a matrix so it is natural to think of mapping B_n to some set of matrices to get a knot invariant.

The Burau Representation

• Let *t* be any non zero complex number. Consider the (n-1) square matrices

$$b_1 = \begin{pmatrix} -t & 0 & & & \\ & & & 0 \\ -1 & 1 & & & \\ & & & 1 & & \\ & & & \ddots & & \\ & 0 & & & 1 \end{pmatrix}, \quad b_i = \begin{pmatrix} 1 & & & & & \\ & 1 & & & & \\ & & 1 -t & 0 & & \\ & & 0 -t & 0 & & \\ & & 0 -1 & 1 & & \\ & & & & & 1 \end{pmatrix}$$

$$b_{n-1} = \begin{pmatrix} 1 & & & & \\ & 1 & & & & 0 \\ & 1 & & & & \\ & & \ddots & & & \\ & & & \ddots & & \\ 0 & & & 0 & -t \end{pmatrix}$$

 $2 \le i \le n-2$ where the diagonal -t is in the i-i position.

Then it is east to see that there matrices satisfy the relations:

 $b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$ and $b_i b_{i+1} = b_{i+1} b_i$ $|i-j| \ge 2$

So...

Define the representation $\pi: B_n \longmapsto GL_{n-1}(\mathbb{C})$

For example $\sigma_2 \sigma_1 \sigma_2^{-1}$ in B_3 acts on \mathbb{C}^2 by:

$$= \sigma_2 \sigma_1 \sigma_2^{-1} \longmapsto b_2 b_1 b_2^{-1}$$

Example of some representations

 B_2

 $X \rightarrow [-t]$

 B_3

$$\left| \begin{array}{c} X \\ \to \begin{bmatrix} 1 & -t \\ 0 & -t \end{bmatrix} \right|$$
$$\left| \begin{array}{c} X \\ \to \begin{bmatrix} 1 & -t \\ 0 & -t \end{bmatrix} \right|$$

Representation of the symmetric group Sn

Let $G = S_n$, and let $\{e_1, e_2, \ldots, e_n\}$ be the standard basis for \mathbb{C}^n .

Let S_n act on \mathbb{C}^n in the natural way: if

 $\mathbf{v} = \alpha_1 \mathbf{e}_1 + \cdots + \alpha_n \mathbf{e}_n,$

then

$$\mathbf{v}\cdot\boldsymbol{\pi}=\alpha_1\mathbf{e}_{\pi(1)}+\cdots+\alpha_n\mathbf{e}_{\pi(n)}.$$

For instance, if n = 4, then under this representation,

$$(143) \longrightarrow \left(\begin{array}{rrrr} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

The Way no.23847294879 to Compute The Alexander Polynomial

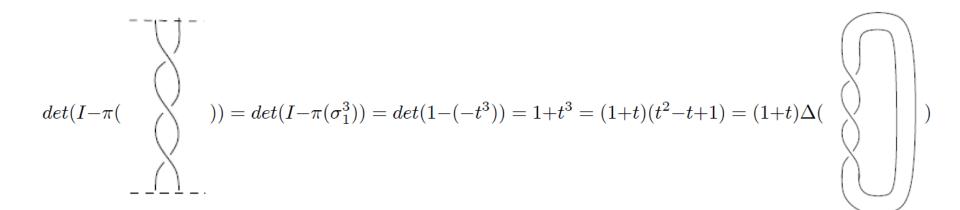
If $\alpha \in B_n$

$$\frac{\det(I - \pi(\alpha))}{1 + t + \ldots + t^{n-1}} = \Delta(\hat{\alpha})$$

Where $\hat{\alpha}$ is the closure of the α .

Note that $det(I - \pi(\alpha))$ is defined using the determinant which allows us to prove the invariance of this expression under Marcov Move I.

Example...The Trefoil



Another Example

Let L be a disjoin union of n circles, then using the fundamental group of the complement of the knot we get

 $\Delta(L) = 0$

On the other hand we see using Burau representation

$$det(I - \pi(\sigma_2)) = det\left(I - \pi\left(\begin{array}{c|c} & \\ & \\ \end{array}\right)\right) = det\left(\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix} - \begin{bmatrix}1 & -t\\ 0 & -t\end{bmatrix}\right)$$
$$= det\begin{bmatrix}0 & -t\\ 0 & 1-t\end{bmatrix} = 0$$

Algebra Given by Generators and Relations

Suppose that A is an algebra over a field K generated by a set of elements $\{x_1, ..., x_q\}$. This means that every element of A can be written as a linear combination of products of the x_i :

$$\sum c_k x_1^{e_{k1}} \dots x_q^{e_{kq}}$$

where $c_k \in K, e_{ki} \geq 0$.

There may be many relations that the xi satisfy which one must know in order to use the generators for computation in A.

Some Examples

Example Consider the complex numbers \mathbb{C} as an algebra over \mathbb{R} . Since $i^2 = -1$, we know that \mathbb{C} is generated by the single element *i*, and indeed this relation suffices to describe \mathbb{C} in terms of the generator *i*:

 $\mathbb{C}\simeq \mathbb{R}[i]/(i^2+1).$

Quotienting out by the ideal generated by i^2+1 is equivalent to the relation $i^2 = -1$ holding in the quotient algebra.

Example The (real) Quaternions is the four-dimensional vector space over R is generated by the formal elements $\{1, i, j, k\}$, so any element in H looks like a1 + bi + cj + dk and this algebra is subject to the relations

$$i^2 = j^2 = k^2 = -1$$

$$ijk = -1$$

which means that when we multiply two elements we need to respect those relations and apply replace them when they show up.

Hecke Algebra H(q,n)

generators

 $g_1, g_2, \ldots, g_{n-1}, and$

relations

 $g_i^2 = (q - 1)g_i + q,$ $g_i g_{i+1}g_i = g_{i+1}g_i g_{i+1},$ $g_i g_j = g_j g_i \quad \text{if } |i - j| \ge 2.$

Hecke Algebra Representation

We can extend the representation π , $\pi(\sigma_i) = g_i$, to H(q, n) in a natural way. So we have a representation of The Hecke algebra H(q, n).

The Key Theorem the

THEOREM (Ocneanu). For every $z \in \mathbb{C}$ there is a linear trace tr on $\bigcup_{n=1}^{\infty} H(q, n)$ uniquely defined by 1) $\operatorname{tr}(ab) = \operatorname{tr}(ba)$. 2) $\operatorname{tr}(1) = 1$. 3) $\operatorname{tr}(xg) = z \operatorname{tr}(x)$ for $x \in H(q, n)$.

The key observation here is the similarity between the condition 3 in the key theorem and the Markov move II. Property 3 will be used to prove the that the trace is invariant under Markov move 2.

Two Variable Invariant

Definition The two-variable invariant $X_L(q, \lambda)$ of the oriented link L is the function

$$X_L(q,\lambda) = \left(-\frac{1-\lambda q}{\sqrt{\lambda}(1-q)}\right)^{n-1} (\sqrt{\lambda})^e \operatorname{tr}(\pi(\alpha))$$

where $\alpha \in B_n$ is any braid with $\hat{\alpha} = L$, *e* being the exponent sum of α as a word on the σ_i 's and π the representation of B_n in H(q, n), $\sigma_i \mapsto g_i$.

Example..again the Trefoil

Example The (right-handed) trefoil is given by the closure of the braid $\sigma_1^3 \in B_2$. Thus

$$X_L(q,\lambda) = \left(-\frac{1-\lambda q}{\sqrt{\lambda}(1-q)}\right)(\sqrt{\lambda})^3 \operatorname{tr}(g_1^3).$$

By the defining relations of the Hecke algebra we have

$$g_{1}^{3} = (q^{2} - q + 1)g_{1} + q(q - 1) \text{ so that}$$

$$X_{L}(q, \lambda) = \left(\frac{\lambda(1 - \lambda q)}{1 - q}\right) \left((q^{2} - q + 1)\frac{(1 - q)}{1 - \lambda q}q(q - 1)\right)$$

$$= \lambda(1 + q^{2} - \lambda q^{2})$$

$$= (\lambda q) \left((\sqrt{q} - 1/\sqrt{q})^{2} + 2 - \lambda q\right)$$

$$= (2t^{2} - t^{4}) + t^{2}x^{2}.$$

Some Properties

- This invariant respects connected sum.
- It is sensitive to the orientation of the link.
- Can distinguish between the knot and its Mirror image.
- The Alexander polynomial is the a special case from this polynomial by setting

$$\Delta(L) = X_L(t, 1/t)$$

• The Hecke algebra representation of Bn can be used to get representations of subgroups of the mapping class groups which can be extended in some cases to the whole group.

