Representations of Finite Groups

Vigre Seminar



Definition

Gwen a group G and vector space V' over a field k. a representation
of G on V' over the field k 1s a homomorphism

m:G— GL(V)

where GL(V'), the general linear group on V.




Definition

Giwven a group G and vector space V' over a field k., a representation
of G on V over the field k 1s a homomorphism

7m:G — GL(V)

where GL(V'), the general linear group on V.

Let V and W be vector spaces over the field k. Two representations m :
G — GL(V) and mo : G — GL(W) are said to be equivalent if there exists a
vector space isomorphism o : V — W such that aomi(g) o a™t = ma(g) for all

gn G .



Some representations of cyclic groups

Consider the cyclic group C,, =< g|g” = 1 >. Any homomorphism 7 :
C, — GL(1,C) = C\{0} is defined by sending the generator g to non-zero
complex number 7(g) that satisfies (7(g))™ = 1.
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C, — GL(1,C) = C\{0} is defined by sending the generator g to non-zero
complex number 7(g) that satisfies (w(g))™ = 1. So if £ is an nth primitive root
of unity then the representation 7 : C,, — S' C C\{0} must belong to the
tamily of representations {m;|7=0,..,n—1} where 7, : C,, — St is defined by
mi(g9) =& .



Some representations of cyclic groups

Consider the cyclic group C, =< g¢g|¢g” = 1 >. Any homomorphism 7 :
C, — GL(1,C) = C\{0} is defined by sending the generator g to non-zero
complex number 7(g) that satisfies (w(g))™ = 1. So if £ is an nth primitive root
of unity then the representation 7 : C,, — S' C C\{0} must belong to the
tamily of representations {7;| j =0,...,n— 1} where 7; : C,, — St is defined by
mi(g) = fj . It is not hard to see that 7; is not equivalent to m; for ¢ # j where
i,7€{0,...,n—1}.



Some representations of S3

1. The trivial representation p, : S3 — GL(1,C) defined pl{g) = 1Id

2. The alternating representation, given by the signature of the permutation
po 1S3 — GL(1,C) defined ,:;(g) = sgn(g)

3. The standard representation on V = {(z,29,23) |21 + 29 + 23 = 0}
with ps((a,b,¢))(z1.22,23) = (Zas Zbs Zc)-




Irreducible representations

Let (m,V) be a representation of a group G over the field k, then we call
the subspace W of V' a subrepresnetation of V' if W is (G-stable.
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Irreducible representations

Let (w,V) be a representation of a group G over the field k, then we call
the subspace W of V' a subrepresnetation of V if W is (G-stable.

If (m,V) is an arbitrary representation then the zero subspace and V itself
are (G-stable spaces.

A representaion (7, V') is said to be irreducible if the only G-stable subspaces
of V are {0} and V itself.
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Any one dimensional representation is irreducible.
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Irreducible representations of a cyclic group

Any one dimensional representation is irreducible.

Every representation from family of representations {7;| j = 0,...,n — 1},
where 7; : C,, — St is defined by 7,(g) = &’, is irreducible since every one of
them is one dimensional.

Theorem The number of inequivalent irreducible representations of a finite
group over the complex field C is equal to the number of distinct conjugate
classes of G



Irreducible representations of a cyclic group

Any one dimensional representation is irreducible.

Every representation from family of representations {m;| j = 0,...,n — 1},
where 7; : C,, — St is defined by 7,(g) = &’, is irreducible since every one of
them is one dimensional.

Theorem The number of inequivalent irreducible representations of a finite
group over the complex field C is equal to the number of distinct conjugate
classes of G

We conclude that the previous family of irreducible representations of the
group (), is the complete list of irreducible representations of this group



Irreducible representations of Ss

The symmetric group S on three letters has three conjugacy classes, repre-
sented by the permutations (1, 2,3). (2, 1,3).and (2, 3,1). It also has three irre-
ducible representations: two are one-dimensional and the third is two-dimensional:
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Irreducible representations of S3

The symmetric group S5 on three letters has three conjugacy classes. repre-
sented by the permutations (1, 2,3). (2, 1,3). and (12, 3,1). It also has three irre-
ducible representations: two are one-dimensional and the third is two-dimensional:

1. The trivial representation p; : S3 — GL(1,C) defined ‘01{9) = Id

2. The alternating representation. given by the signature of the permutation
P9 i S3 — GL(1,C) defined p;(g) = sgn(g)

3. The standard representation on V = {(z1,29,23) |21 + 20 + 23 = 0}
with ps((a,b,¢))(z1,22,23) = (Zas 2, 2c). This representation is equivalent to

the matrix representation

pac1:9) =[] o] zam= [} 7}



Direct Sum of Representations

Let (V,71) and (W, w2) be representations of G. Then (V &W, w1 Bma) where
1Dy G — GL(VEW) is defined by w1 &7ma(g) (v, w) = (m1(g9)(v), m2(g9)(w)),
for g € G, v € W, w € W, is a representation of G called the direct sum of the
representations (V,mq) and (W, ms).



Direct Sum of Representations

Let (V,71) and (W, w2) be representations of G. Then (V &W, w1 Bma) where
1Dy G — GL(VEW) is defined by w1 &7ma(g) (v, w) = (m1(g9)(v), m2(g9)(w)),
for g € G, v € W, w € W, is a representation of G called the direct sum of the
representations (V,mq) and (W, ms).

In the case where V and W are finite dimensional of dimension n and m
receptively then if we choose a basis {vy,..,v,} for V and a basis {w,..,w,}
for W then {v1, .., vp, w1, .., wy,} is a basis for V@ W and we can use this basis
to identify GL(V ® W) with G'L(n 4+ m, k) and obtain a matrix representation
T D o



Maschke’s Theorem

Let G be a finite group and (7, V') be a nonzero finite dimensional represen-
tation of G. Then
V=W &..eW

where W; is an irreducible subrepresentation of V.




Maschke’s Theorem

Let (¢ be a finite group and (7, V') be a nonzero finite dimensional represen-
tation of G. Then
V=W &..eW,

where W; is an irreducible subrepresentation of V.

Corollary Let G be a finite group and let (w, V') be a representation of G of
dimension d. Then there 1s a fired imnvertable matrix T' such that every matrix
m(g), g € G, has the form

/ﬂ’l(g) 0 0 \
0 m(g) .- 0
Tr(g)T™" =

where each m; 15 an wrreducible matrix representation of G.



Tensor product of representations

Let (V,71) and (W, m5) be representations of G. Then (V@W, 1 @ms ), where
T @ me 1 G — GL(V @ W) is defined by (71 @ m2)(g) = 71(g) ® ma(g), for all
g in (G, 1s a representation of GG called the tensor product of the representations

(V,m1) and (W, ma).




Tensor product of representations

Let (V,m) and (W, m5) be representations of G. Then (V@W, 71 @73 ), where
T @72 : G — GL(V @ W) is defined by (71 ® m2)(g) = 71(g) @ 72(g), for all
g 1n (G, 1s a representation of G called the tensor product of the representations

(V,m1) and (W, m2).

Theorem Let G and H be groups.

1. If m and p are irreducible representations of G and H, repectively, then
7 @ p i1s an irreducible representation of G x H.

2. It m; and p; are complete list of inequivalent irreducible representations
for G and H, repectively, then m;@p; 1s a complete list of inequivalent irreducible
representations for G x H.



Tensor product of representations

Let (V,m) and (W, m5) be representations of G. Then (V@W, 71 @73 ), where
T @72 : G — GL(V @ W) is defined by (71 ® m2)(g) = 71(g) @ 72(g), for all
g 1n (G, 1s a representation of G called the tensor product of the representations

(V,m1) and (W, m2).

Theorem Let G and H be groups.

1. If m and p are irreducible representations of G and H, repectively, then
7 @ p i1s an irreducible representation of G x H.

2. It m; and p; are complete list of inequivalent irreducible representations
for G and H, repectively, then m;@p; 1s a complete list of inequivalent irreducible
representations for G x H.

We can use this theorem to write the complete list of inequivalent irreducible
representations for any finite abelian group
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Let (V,m) be a representation of G. The character of 7 is the function
X, : G — C defined by x_(g) = Tr(m(g)) for all g in G.
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Group Characters

Let (V,m) be a representation of G. The character of 7 is the function
X, : G — C defined by x_(g) = Tr(m(g)) for all g in G.

Note that if (V,m1) and (W, ms) are two equivalent represntation of G then

there exists a vector space isomorephism T : V' — W such that aom(g) o~ =

m2(g) and hence

Xr,(9) = Tr(ma(g)) = Tr(aomi(g)oa™") =Tr(m1(g)) = Xry (9)

For a matrix representation of dimension n.

n

Xx (9) =Y _(m(9))s

r=1



Group Characters

Let (V,m) be a representation of G. The character of 7 is the function
X, : G — C defined by x_(g) = Tr(m(g)) for all g in G.

Note that if (V,m1) and (W, ms) are two equivalent represntation of G then

there exists a vector space isomorephism T : V' — W such that aom(g) o~ =

m2(g) and hence

Xr,(9) = Tr(ma(g)) = Tr(aomi(g)oa™") =Tr(m1(g)) = Xry (9)

For a matrix representation of dimension n.

Xx (9) =Y _(m(9))s
1 =1

If the representation 7 is irreducible then the character x . is called an irre-
ducible character



Elementary properties of group characters

(1) x,.(e) =dim=




Elementary properties of group characters

(1) x,.(e) =dim=

(2) x.(g71) = x,.(g) for every g in GG




Elementary properties of group characters

(1) x,.(e) =dim=

(2) x.(g71) = x,.(g) for every g in GG

(3) Xﬂ'l@ﬂ'g — Xﬂ'l _l_ Xﬂ'g




Elementary properties of group characters

(1) x.(e) =dim=

(2) x.(g71) = x,.(g) for every g in GG

(3) Xﬂ'l@ﬂ'g — Xﬂ'l _l_ Xﬂ'g

(4) X’ﬂ'1®ﬂ'2 - Xﬂ_lxﬂ_g




Inner product of characters

Denote by L*(G) the vector space of functions on G taking values in C. On
L?*(@), we can define an inner product by

1 -
(filf2) = 1 > Alg)f2(9)

gedG




Inner product of characters

Denote by L*(G) the vector space of functions on G taking values in C. On
L?(G), we can define an inner product by

(f1lf2) = Zfl

gEG

With resprect to this inner product the irreducible characters of a finite
egroup over the complex field C from an orthonormal system. In other words. if
(V,71) and (W, ) are two irreducible representations of a group G. Then

(Xﬂ'l |Xﬂ'2) — 67!'15’-’1'2



Inner product of characters

Let (m, V') be a representation of a group G over the field C with character
X .- Suppose

T = Mm171 P MoTo O ... O ML

where the 7; are pairwise mequivalent irreducibles with characters . .
1. x,. = MAXr, +M2Xr, + oo +MeXy, -
' (X;T\X?T ) = m; for all j.

X?T|X1'T Zm.?

4. 7 is 1116duc.1ble it and only if (x.|x.) = 1.
5. Let p be another representation of G with character x,. Then m =~ p 1f
and only if x_(g) = x,(g) for all g in G.



Inner product of characters

Proof
k

(1) x=(9) = tr(n(g)) = tr((®f_ymym;)(9)) = tr((@f=imym;(9))) = ) _(mytr(m;(g))) =

i=1

k

ijxﬂj (g) for all g in G.
=1




Inner product of characters

Proof
(1) Xx(g) = tr(n(g9)) = tr((&f_1mym;)(9)) = tr((&_ym;7;(g))) = Z(mjt?"(ﬁj (9))) =
ijij (g) for all g in G.

k k
(2) (XelXm,) = O miXmXx,) = D 15 (X, [Xr,) = My
=1 i=1




Inner product of characters

Proof
(1) Xx(g) = tr(n(g9)) = tr((&f_1mym;)(9)) = tr((&_ym;7;(g))) = Z(mjtT(Wj(Q))) =
ijij (g) for all g in G.

(2) (X?I’lX‘JTj) — (ijX‘}Tilszj) — ZmJ(X'ﬂ'|Xﬂ'J) — m.')'
i=1 i=1

(3) (XalXr) = O Mixm,| Y MiXej) = sz M5 (X [ Xm;) = Zm
i=1 i=1

i=1 j=1




Inner product of characters

Proof

k
(1) xx(9) = tr(n(9)) = tr((&5_1m;m;)(9)) = tr((B5_1m;m;(9))) = Y (mjtr(x;(g)))
j=1

k
ijxﬁj (g) for all g in G.
i=1

(2) (XnlXar,) = ngxm Xa,) = 3 M5 (X, [Xr,) = M
=1

k k
(3) (Xrlxr) = (Zmixﬂ\ ijxﬁj) = mumi(xgIxa,) = Y m?
i=1 j=1

i=1 j=1 i=1

By

k
(4) If (x.|x,) = Zm? = 1 then there must be exactly one index j such
i=1
that m; = 1 and all the rest of m; must be zero. But then m = m; which 1s
irreducible by assumption.



Inner product of characters

Proof

k
(1) xx(9) = tr(n(9)) = tr((&5_1m;m;)(9)) = tr((B5_1m;m;(9))) = Y (mjtr(x;(g)))
j=1

k
ijxﬁj (g) for all g in G.
i=1

(2) (XnlXar,) = ngxm \XT:, = M (X Xr,) = M
=1
k

=> Z M (X, [Xr,) = Y 02

i=1 j=1 i=1

By

(3) (Xrlxr) = Zmexn

k
(4) If (x.|x,) = Zm? = 1 then there must be exactly one index j such
i=1
that m; = 1 and all the rest of m; must be zero. But then m = m; which 1s
irreducible by assumption.

(5) We can always assume that the expansions of p and 7 contain the the
same Irreducibles. Suppose that p = n1m; @ noma & ... G ngmg. Since X = X,
then m; = (Xr|Xx,) = (X, Xx;) = n; for all j. Thus m =~ p.



Inner product of characters

The previous theorem can be used to

(1) Decomposing an unknown character as a linear combination of irreducible
characters.

(2) Constructing the complete character table when only some of the irre-
ducible characters are known.

(3) Finding the order of the group.



Character Table

If € is a 4th primitive root of unity then the family of representations () =
{m;] j =0,1,2,3 }, where 7; : C4 — S is defined by 7,(g) = &, is a complete
list of irreducible representations.




Character Table
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Character Table
It £ is a 4th primitive root of unity then the family of representations {2 =
{r;] 7=0,1,2,3 }, where 7; : Cy — S* is defined by 7;(g) = &, is a complete

list of 1rreducible representations.

‘Conjugacy classes of the group C}y

| | L e g g g’
Irreducible representations of Cy T 1 T T
m |1l —1 —
m |1l -1 1 -1

s |1 —2 —1 1

The character table for C}y



The Character Table for Ss

The symmetric group S5 on three letters has three conjugacy classes. repre-
sented by the permutations (1, 2,3). (2, 1,3). and (12, 3,1). It also has three irre-
ducible representations: two are one-dimensional and the third is two-dimensional:

1. The trivial representation p; : S3 — GL(1,C) defined ‘01{9) = Id

2. The alternating representation. given by the signature of the permutation
P9 i S3 — GL(1,C) defined ,{;(g) = sgn(g)

3. The standard representation on V = {(z1,29,23) |21 + 20 + 23 = 0}
with ps({a,b,c})(z1,22,23) = (Za, 2, 2c). This representation is equivalent to

the matrix representation

m@ =[] o atzam= [} 7



The Character Table for Ss

So the character table for this representation is

K1 K, K
ol 1 1 1
|1 -1 1
l2 0o -1




Thank You
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