Representations of Finite Groups

Vigre Seminar Mustafa Hajij

Definition

Given a group G and vector space V over a field k, a representation of G on V over the field k is a homomorphism

 $\pi: G \to GL(V)$

where GL(V), the general linear group on V.

Definition

Given a group G and vector space V over a field k, a representation of G on V over the field k is a homomorphism

 $\pi: G \to GL(V)$

where GL(V), the general linear group on V.

Let V and W be vector spaces over the field k. Two representations π_1 : $G \to GL(V)$ and $\pi_2 : G \to GL(W)$ are said to be equivalent if there exists a vector space isomorphism $\alpha : V \to W$ such that $\alpha \circ \pi_1(g) \circ \alpha^{-1} = \pi_2(g)$ for all g in G.

Some representations of cyclic groups

Consider the cyclic group $C_n = \langle g | g^n = 1 \rangle$. Any homomorphism π : $C_n \to GL(1,\mathbb{C}) = \mathbb{C} \setminus \{0\}$ is defined by sending the generator g to non-zero complex number $\pi(g)$ that satisfies $(\pi(g))^n = 1$.

Some representations of cyclic groups

Consider the cyclic group $C_n = \langle g | g^n = 1 \rangle$. Any homomorphism π : $C_n \to GL(1,\mathbb{C}) = \mathbb{C} \setminus \{0\}$ is defined by sending the generator g to non-zero complex number $\pi(g)$ that satisfies $(\pi(g))^n = 1$. So if ξ is an nth primitive root of unity then the representation $\pi : C_n \to S^1 \subset \mathbb{C} \setminus \{0\}$ must belong to the family of representations $\{\pi_j | j = 0, ..., n-1\}$ where $\pi_j : C_n \to S^1$ is defined by $\pi_j(g) = \xi^j$.

Some representations of cyclic groups

Consider the cyclic group $C_n = \langle g | g^n = 1 \rangle$. Any homomorphism π : $C_n \to GL(1,\mathbb{C}) = \mathbb{C} \setminus \{0\}$ is defined by sending the generator g to non-zero complex number $\pi(g)$ that satisfies $(\pi(g))^n = 1$. So if ξ is an nth primitive root of unity then the representation $\pi : C_n \to S^1 \subset \mathbb{C} \setminus \{0\}$ must belong to the family of representations $\{\pi_j | j = 0, ..., n-1\}$ where $\pi_j : C_n \to S^1$ is defined by $\pi_j(g) = \xi^j$. It is not hard to see that π_j is not equivalent to π_i for $i \neq j$ where $i, j \in \{0, ..., n-1\}$. 1. The trivial representation $\rho_1: S_3 \to GL(1,\mathbb{C})$ defined $\rho(g) = Id$

2. The alternating representation, given by the signature of the permutation $\rho_2: S_3 \to GL(1, \mathbb{C})$ defined $\rho_2(g) = sgn(g)$

3. The standard representation on $V = \{(z_1, z_2, z_3) | z_1 + z_2 + z_3 = 0\}$ with $\rho_3((a, b, c))(z_1, z_2, z_3) = (z_a, z_b, z_c).$ Let (π, V) be a representation of a group G over the field k, then we call the subspace W of V a subrepresentation of V if W is G-stable. Let (π, V) be a representation of a group G over the field k, then we call the subspace W of V a subrepresentation of V if W is G-stable.

If (π, V) is an arbitrary representation then the zero subspace and V itself are G-stable spaces.

Let (π, V) be a representation of a group G over the field k, then we call the subspace W of V a subrepresentation of V if W is G-stable.

If (π, V) is an arbitrary representation then the zero subspace and V itself are G-stable spaces.

A representation (π, V) is said to be irreducible if the only G-stable subspaces of V are $\{0\}$ and V itself.

Any one dimensional representation is irreducible.

Any one dimensional representation is irreducible.

Every representation from family of representations $\{\pi_j | j = 0, ..., n-1\}$, where $\pi_j : C_n \to S^1$ is defined by $\pi_j(g) = \xi^j$, is irreducible since every one of them is one dimensional.

Any one dimensional representation is irreducible.

Every representation from family of representations $\{\pi_j | j = 0, ..., n-1\}$, where $\pi_j : C_n \to S^1$ is defined by $\pi_j(g) = \xi^j$, is irreducible since every one of them is one dimensional.

Theorem The number of inequivalent irreducible representations of a finite group over the complex field $\mathbb C$ is equal to the number of distinct conjugate classes of G

Any one dimensional representation is irreducible.

Every representation from family of representations $\{\pi_j | j = 0, ..., n-1\}$, where $\pi_j : C_n \to S^1$ is defined by $\pi_j(g) = \xi^j$, is irreducible since every one of them is one dimensional.

Theorem The number of inequivalent irreducible representations of a finite group over the complex field $\mathbb C$ is equal to the number of distinct conjugate classes of G

We conclude that the previous family of irreducible representations of the group C_n is the complete list of irreducible representations of this group

The symmetric group S_3 on three letters has three conjugacy classes, represented by the permutations (1, 2, 3), (2, 1, 3), and (2, 3, 1). It also has three irreducible representations; two are one-dimensional and the third is two-dimensional:

The symmetric group S_3 on three letters has three conjugacy classes, represented by the permutations (1, 2, 3), (2, 1, 3), and (2, 3, 1). It also has three irreducible representations; two are one-dimensional and the third is two-dimensional:

1. The trivial representation $\rho_1: S_3 \to GL(1, \mathbb{C})$ defined $\rho(g) = Id$

The symmetric group S_3 on three letters has three conjugacy classes, represented by the permutations (1, 2, 3), (2, 1, 3), and (2, 3, 1). It also has three irreducible representations; two are one-dimensional and the third is two-dimensional:

2. The alternating representation, given by the signature of the permutation $\rho_2: S_3 \to GL(1, \mathbb{C})$ defined $\rho_2(g) = sgn(g)$

The symmetric group S_3 on three letters has three conjugacy classes, represented by the permutations (1, 2, 3), (2, 1, 3), and (2, 3, 1). It also has three irreducible representations; two are one-dimensional and the third is two-dimensional:

1. The trivial representation $\rho_1: S_3 \to GL(1, \mathbb{C})$ defined $\rho_1(g) = Id$

2. The alternating representation, given by the signature of the permutation $\rho_2: S_3 \to GL(1, \mathbb{C})$ defined $\rho_2(g) = sgn(g)$

3. The standard representation on $V = \{(z_1, z_2, z_3) | z_1 + z_2 + z_3 = 0\}$ with $\rho_3((a, b, c))(z_1, z_2, z_3) = (z_a, z_b, z_c).$

The symmetric group S_3 on three letters has three conjugacy classes, represented by the permutations (1, 2, 3), (2, 1, 3), and (2, 3, 1). It also has three irreducible representations; two are one-dimensional and the third is two-dimensional:

1. The trivial representation $\rho_1: S_3 \to GL(1, \mathbb{C})$ defined $\rho_1(g) = Id$

2. The alternating representation, given by the signature of the permutation $\rho_2: S_3 \to GL(1, \mathbb{C})$ defined $\rho_2(g) = sgn(g)$

3. The standard representation on $V = \{(z_1, z_2, z_3) | z_1 + z_2 + z_3 = 0\}$ with $\rho_3((a, b, c))(z_1, z_2, z_3) = (z_a, z_b, z_c)$. This representation is equivalent to the matrix representation

$$\hat{\rho}_3((2,1,3)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \hat{\rho}_3((2,3,1)) = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$$

Direct Sum of Representations

Let (V, π_1) and (W, π_2) be representations of G. Then $(V \oplus W, \pi_1 \oplus \pi_2)$ where $\pi_1 \oplus \pi_2 : G \to GL(V \oplus W)$ is defined by $\pi_1 \oplus \pi_2(g)(v, w) = (\pi_1(g)(v), \pi_2(g)(w))$, for $g \in G, v \in W, w \in W$, is a representation of G called the direct sum of the representations (V, π_1) and (W, π_2) .

Direct Sum of Representations

Let (V, π_1) and (W, π_2) be representations of G. Then $(V \oplus W, \pi_1 \oplus \pi_2)$ where $\pi_1 \oplus \pi_2 : G \to GL(V \oplus W)$ is defined by $\pi_1 \oplus \pi_2(g)(v, w) = (\pi_1(g)(v), \pi_2(g)(w))$, for $g \in G, v \in W, w \in W$, is a representation of G called the direct sum of the representations (V, π_1) and (W, π_2) .

In the case where V and W are finite dimensional of dimension n and m receptively then if we choose a basis $\{v_1, .., v_n\}$ for V and a basis $\{w_1, .., w_n\}$ for W then $\{v_1, .., v_n, w_1, .., w_n\}$ is a basis for $V \oplus W$ and we can use this basis to identify $GL(V \oplus W)$ with GL(n + m, k) and obtain a matrix representation $\pi_1 \oplus \pi_2$

$$\left(egin{array}{cc} \pi_1(g) & 0 \ 0 & \pi_2(g) \end{array}
ight)$$

Maschke's Theorem

Let G be a finite group and (π,V) be a nonzero finite dimensional representation of G. Then

 $V = W_1 \oplus \ldots \oplus W_k$

where W_i is an irreducible subrepresentation of V.

Maschke's Theorem

Let G be a finite group and (π, V) be a nonzero finite dimensional representation of G. Then

 $V = W_1 \oplus \ldots \oplus W_k$

where W_i is an irreducible subrepresentation of V.

Corollary Let G be a finite group and let (π, V) be a representation of G of dimension d. Then there is a fixed invertable matrix T such that every matrix $\pi(g), g \in G$, has the form

where each π_i is an irreducible matrix representation of G.

Tensor product of representations

Let (V, π_1) and (W, π_2) be representations of G. Then $(V \otimes W, \pi_1 \otimes \pi_2)$, where $\pi_1 \otimes \pi_2 : G \to GL(V \otimes W)$ is defined by $(\pi_1 \otimes \pi_2)(g) = \pi_1(g) \otimes \pi_2(g)$, for all g in G, is a representation of G called the tensor product of the representations (V, π_1) and (W, π_2) .

Tensor product of representations

Let (V, π_1) and (W, π_2) be representations of G. Then $(V \otimes W, \pi_1 \otimes \pi_2)$, where $\pi_1 \otimes \pi_2 : G \to GL(V \otimes W)$ is defined by $(\pi_1 \otimes \pi_2)(g) = \pi_1(g) \otimes \pi_2(g)$, for all g in G, is a representation of G called the tensor product of the representations (V, π_1) and (W, π_2) .

Theorem Let G and H be groups.

1. If π and ρ are irreducible representations of G and H, repectively, then $\pi \otimes \rho$ is an irreducible representation of $G \times H$.

2. If π_i and ρ_j are complete list of inequivalent irreducible representations for G and H, repectively, then $\pi_i \otimes \rho_j$ is a complete list of inequivalent irreducible representations for $G \times H$.

Tensor product of representations

Let (V, π_1) and (W, π_2) be representations of G. Then $(V \otimes W, \pi_1 \otimes \pi_2)$, where $\pi_1 \otimes \pi_2 : G \to GL(V \otimes W)$ is defined by $(\pi_1 \otimes \pi_2)(g) = \pi_1(g) \otimes \pi_2(g)$, for all g in G, is a representation of G called the tensor product of the representations (V, π_1) and (W, π_2) .

Theorem Let G and H be groups.

1. If π and ρ are irreducible representations of G and H, repectively, then $\pi \otimes \rho$ is an irreducible representation of $G \times H$.

2. If π_i and ρ_j are complete list of inequivalent irreducible representations for G and H, repectively, then $\pi_i \otimes \rho_j$ is a complete list of inequivalent irreducible representations for $G \times H$.

We can use this theorem to write the complete list of inequivalent irreducible representations for any finite abelian group

Let (V, π) be a representation of G. The character of π is the function $\chi_{\pi}: G \to \mathbb{C}$ defined by $\chi_{\pi}(g) = Tr(\pi(g))$ for all g in G.

Let (V, π) be a representation of G. The character of π is the function $\chi_{\pi}: G \to \mathbb{C}$ defined by $\chi_{\pi}(g) = Tr(\pi(g))$ for all g in G.

Note that if (V, π_1) and (W, π_2) are two equivalent representation of G then there exists a vector space isomorphism $T: V \to W$ such that $\alpha \circ \pi_1(g) \circ \alpha^{-1} = \pi_2(g)$ and hence

$$\chi_{\pi_2}(g) = Tr(\pi_2(g)) = Tr(\alpha \circ \pi_1(g) \circ \alpha^{-1}) = Tr(\pi_1(g)) = \chi_{\pi_1}(g)$$

Let (V, π) be a representation of G. The character of π is the function $\chi_{\pi}: G \to \mathbb{C}$ defined by $\chi_{\pi}(g) = Tr(\pi(g))$ for all g in G.

Note that if (V, π_1) and (W, π_2) are two equivalent representation of G then there exists a vector space isomorphism $T: V \to W$ such that $\alpha \circ \pi_1(g) \circ \alpha^{-1} = \pi_2(g)$ and hence

$$\chi_{\pi_2}(g) = Tr(\pi_2(g)) = Tr(\alpha \circ \pi_1(g) \circ \alpha^{-1}) = Tr(\pi_1(g)) = \chi_{\pi_1}(g)$$

For a matrix representation of dimension n,

$$\chi_{\pi}(g) = \sum_{i=1}^{n} (\pi(g))_{ii}$$

Let (V, π) be a representation of G. The character of π is the function $\chi_{\pi}: G \to \mathbb{C}$ defined by $\chi_{\pi}(g) = Tr(\pi(g))$ for all g in G.

Note that if (V, π_1) and (W, π_2) are two equivalent representation of G then there exists a vector space isomorphism $T: V \to W$ such that $\alpha \circ \pi_1(g) \circ \alpha^{-1} = \pi_2(g)$ and hence

$$\chi_{\pi_2}(g) = Tr(\pi_2(g)) = Tr(\alpha \circ \pi_1(g) \circ \alpha^{-1}) = Tr(\pi_1(g)) = \chi_{\pi_1}(g)$$

For a matrix representation of dimension n,

$$\chi_{\pi}(g) = \sum_{i=1}^{n} (\pi(g))_{ii}$$

If the representation π is irreducible then the character χ_{π} is called an irreducible character

(1) $\chi_{\pi}(e) = \dim \pi$

(1) $\chi_{\pi}(e) = \dim \pi$

(2) $\chi_{\pi}(g^{-1}) = \overline{\chi_{\pi}(g)}$ for every g in G

(1)
$$\chi_{\pi}(e) = \dim \pi$$

(2)
$$\chi_{\pi}(g^{-1}) = \overline{\chi_{\pi}(g)}$$
 for every g in G

(3)
$$\chi_{\pi_1 \oplus \pi_2} = \chi_{\pi_1} + \chi_{\pi_2}$$

(1)
$$\chi_{\pi}(e) = \dim \pi$$

(2) $\chi_{\pi}(g^{-1}) = \overline{\chi_{\pi}(g)}$ for every g in G
(3) $\chi_{\pi_1 \oplus \pi_2} = \chi_{\pi_1} + \chi_{\pi_2}$
(4) $\chi_{\pi_1 \otimes \pi_2} = \chi_{\pi_1} \chi_{\pi_2}$

Inner product of characters

Denote by $L^2(G)$ the vector space of functions on G taking values in \mathbb{C} . On $L^2(G)$, we can define an inner product by

$$(f_1|f_2) = \frac{1}{|G|} \sum_{g \in G} \overline{f_1(g)} f_2(g)$$

Inner product of characters

Denote by $L^2(G)$ the vector space of functions on G taking values in \mathbb{C} . On $L^2(G)$, we can define an inner product by

$$(f_1|f_2) = \frac{1}{|G|} \sum_{g \in G} \overline{f_1(g)} f_2(g)$$

With resprect to this inner product the irreducible characters of a finite group over the complex field \mathbb{C} from an orthonormal system. In other words, if (V, π_1) and (W, π_2) are two irreducible representations of a group G. Then

$$(\chi_{\pi_1}|\chi_{\pi_2}) = \delta_{\pi_1,\pi_2}$$

Let (π, V) be a representation of a group G over the field \mathbb{C} with character χ_{π} . Suppose

$$\pi = m_1 \pi_1 \oplus m_2 \pi_2 \oplus \ldots \oplus m_k \pi_k$$

where the π_j are pairwise inequivalent irreducibles with characters χ_{π_i} . 1. $\chi_{\pi} = m_1 \chi_{\pi_1} + m_2 \chi_{\pi_2} + \ldots + m_k \chi_{\pi_k}$. 2. $(\chi_{\pi} | \chi_{\pi_j}) = m_j$ for all j. 3. $(\chi_{\pi} | \chi_{\pi}) = \sum_{j=1}^k m_j^2$.

4. π is irreducible if and only if $(\chi_{\pi}|\chi_{\pi}) = 1$.

5. Let ρ be another representation of G with character χ_{ρ} . Then $\pi \simeq \rho$ if and only if $\chi_{\pi}(g) = \chi_{\rho}(g)$ for all g in G.

$\begin{aligned} \mathbf{Proof} \\ (1) \ \chi_{\pi}(g) &= tr(\pi(g)) = tr((\oplus_{j=1}^{k} m_{j} \pi_{j})(g)) = tr((\oplus_{j=1}^{k} m_{j} \pi_{j}(g))) = \sum_{j=1}^{k} (m_{j} tr(\pi_{j}(g))) = \\ \sum_{j=1}^{k} m_{j} \chi_{\pi_{j}}(g) \text{ for all } g \text{ in } G. \end{aligned}$

\mathbf{Proof}

$$(1) \chi_{\pi}(g) = tr(\pi(g)) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j})(g)) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j}(g))) = \sum_{j=1}^{k} (m_{j}tr(\pi_{j}(g))) = k$$

$$\sum_{j=1}^{k} m_j \chi_{\pi_j}(g) \text{ for all } g \text{ in } G.$$

$$(2) \ (\chi_{\pi} | \chi_{\pi_j}) = (\sum_{i=1}^{k} m_j \chi_{\pi_i} | \chi_{\pi_j}) = \sum_{i=1}^{k} m_j (\chi_{\pi_i} | \chi_{\pi_j}) = m_j$$

Proof

$$(1) \ \chi_{\pi}(g) = tr(\pi(g)) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j})(g)) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j}(g))) = \sum_{j=1}^{k} (m_{j}tr(\pi_{j}(g))) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j})(g)) = tr((\oplus_{j=1$$

$$\sum_{j=1}^k m_j \chi_{\pi_j}(g) \text{ for all } g \text{ in } G.$$

(2)
$$(\chi_{\pi}|\chi_{\pi_{j}}) = (\sum_{i=1}^{k} m_{j}\chi_{\pi_{i}}|\chi_{\pi_{j}}) = \sum_{i=1}^{k} m_{j}(\chi_{\pi_{i}}|\chi_{\pi_{j}}) = m_{j}$$

(3) $(\chi_{\pi}|\chi_{\pi}) = (\sum_{i=1}^{k} m_{i}\chi_{\pi_{i}}|\sum_{j=1}^{k} m_{j}\chi_{\pi_{j}}) = \sum_{i=1}^{k} \sum_{j=1}^{k} m_{i}m_{j}(\chi_{\pi_{i}}|\chi_{\pi_{j}}) = \sum_{i=1}^{k} m_{i}^{2}$

Proof

$$(1) \ \chi_{\pi}(g) = tr(\pi(g)) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j})(g)) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j}(g))) = \sum_{j=1}^{k} (m_{j}tr(\pi_{j}(g))) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j})(g)) = tr((\oplus_{j=1$$

 $\sum_{j=1}^{k} m_j \chi_{\pi_j}(g) \text{ for all } g \text{ in } G.$

(2)
$$(\chi_{\pi}|\chi_{\pi_{j}}) = (\sum_{i=1}^{k} m_{j}\chi_{\pi_{i}}|\chi_{\pi_{j}}) = \sum_{i=1}^{k} m_{j}(\chi_{\pi_{i}}|\chi_{\pi_{j}}) = m_{j}$$

(3) $(\chi_{\pi}|\chi_{\pi}) = (\sum_{i=1}^{k} m_{i}\chi_{\pi_{i}}|\sum_{j=1}^{k} m_{j}\chi_{\pi_{j}}) = \sum_{i=1}^{k} \sum_{j=1}^{k} m_{i}m_{j}(\chi_{\pi_{i}}|\chi_{\pi_{j}}) = \sum_{i=1}^{k} m_{i}^{2}$
(4) If $(\chi_{\pi}|\chi_{\pi}) = \sum_{j=1}^{k} m_{j}^{2} = 1$ then there must be exactly one index j such

that $m_j = 1$ and all the rest of m_i must be zero. But then $\pi = \pi_j$ which is irreducible by assumption.

Proof

$$(1) \chi_{\pi}(g) = tr(\pi(g)) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j})(g)) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j}(g))) = \sum_{j=1}^{k} (m_{j}tr(\pi_{j}(g))) = tr((\oplus_{j=1}^{k} m_{j}\pi_{j})(g)) = tr((\oplus_{j=1}^$$

 $\sum_{j=1}^{\kappa} m_j \chi_{\pi_j}(g) \text{ for all } g \text{ in } G.$

(2)
$$(\chi_{\pi}|\chi_{\pi_{j}}) = (\sum_{i=1}^{k} m_{j}\chi_{\pi_{i}}|\chi_{\pi_{j}}) = \sum_{i=1}^{k} m_{j}(\chi_{\pi_{i}}|\chi_{\pi_{j}}) = m_{j}$$

(3) $(\chi_{\pi}|\chi_{\pi}) = (\sum_{i=1}^{k} m_{i}\chi_{\pi_{i}}|\sum_{j=1}^{k} m_{j}\chi_{\pi_{j}}) = \sum_{i=1}^{k} \sum_{j=1}^{k} m_{i}m_{j}(\chi_{\pi_{i}}|\chi_{\pi_{j}}) = \sum_{i=1}^{k} m_{i}^{2}$
(4) If $(\chi_{\pi}|\chi_{\pi}) = \sum_{i=1}^{k} m_{j}^{2} = 1$ then there must be exactly one index j such

j=1that $m_j = 1$ and all the rest of m_i must be zero. But then $\pi = \pi_j$ which is irreducible by assumption.

(5) We can always assume that the expansions of ρ and π contain the the same irreducibles. Suppose that $\rho = n_1 \pi_1 \oplus n_2 \pi_2 \oplus \ldots \oplus n_k \pi_k$. Since $\chi_{\pi} = \chi_{\rho}$, then $m_j = (\chi_{\pi} | \chi_{\pi_j}) = (\chi_{\rho} | \chi_{\pi_j}) = n_j$ for all j. Thus $\pi \simeq \rho$.

The previous theorem can be used to

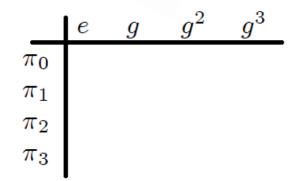
(1) Decomposing an unknown character as a linear combination of irreducible characters.

(2) Constructing the complete character table when only some of the irreducible characters are known.

(3) Finding the order of the group.

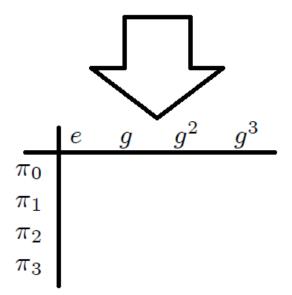
If ξ is a 4th primitive root of unity then the family of representations $\Omega = \{\pi_j | j = 0, 1, 2, 3\}$, where $\pi_j : C_4 \to S^1$ is defined by $\pi_j(g) = \xi^j$, is a complete list of irreducible representations.

If ξ is a 4th primitive root of unity then the family of representations $\Omega = \{\pi_j | j = 0, 1, 2, 3\}$, where $\pi_j : C_4 \to S^1$ is defined by $\pi_j(g) = \xi^j$, is a complete list of irreducible representations.

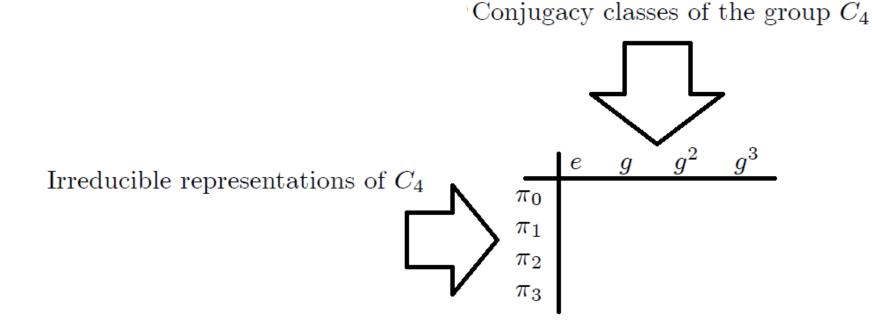


If ξ is a 4th primitive root of unity then the family of representations $\Omega = \{\pi_j | j = 0, 1, 2, 3\}$, where $\pi_j : C_4 \to S^1$ is defined by $\pi_j(g) = \xi^j$, is a complete list of irreducible representations.

Conjugacy classes of the group C_4

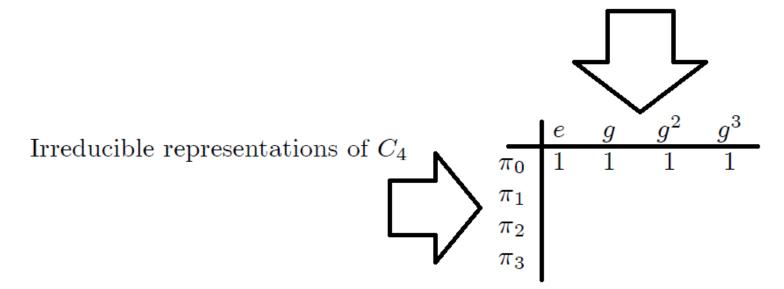


If ξ is a 4th primitive root of unity then the family of representations $\Omega = \{\pi_j | j = 0, 1, 2, 3\}$, where $\pi_j : C_4 \to S^1$ is defined by $\pi_j(g) = \xi^j$, is a complete list of irreducible representations.



If ξ is a 4th primitive root of unity then the family of representations $\Omega = \{\pi_j | j = 0, 1, 2, 3\}$, where $\pi_j : C_4 \to S^1$ is defined by $\pi_j(g) = \xi^j$, is a complete list of irreducible representations.

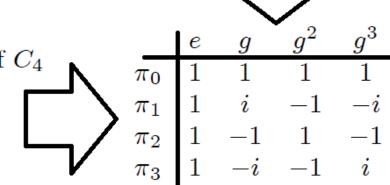
Conjugacy classes of the group C_4



If ξ is a 4th primitive root of unity then the family of representations $\Omega = \{\pi_j | j = 0, 1, 2, 3\}$, where $\pi_j : C_4 \to S^1$ is defined by $\pi_j(g) = \xi^j$, is a complete list of irreducible representations.

Conjugacy classes of the group C_4

Irreducible representations of C_4



The Character Table for S₃

The symmetric group S_3 on three letters has three conjugacy classes, represented by the permutations (1, 2, 3), (2, 1, 3), and (2, 3, 1). It also has three irreducible representations; two are one-dimensional and the third is two-dimensional:

1. The trivial representation $\rho_1: S_3 \to GL(1, \mathbb{C})$ defined $\rho_1(g) = Id$

2. The alternating representation, given by the signature of the permutation $\rho_2: S_3 \to GL(1, \mathbb{C})$ defined $\rho_2(g) = sgn(g)$

3. The standard representation on $V = \{(z_1, z_2, z_3) | z_1 + z_2 + z_3 = 0\}$ with $\rho_3(\{a, b, c\})(z_1, z_2, z_3) = (z_a, z_b, z_c)$. This representation is equivalent to the matrix representation

$$\hat{\rho}_3(\{2,1,3\}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \hat{\rho}_3(\{2,3,1\}) = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$$

The Character Table for S₃

So the character table for this representation is

	K_1	K_2	K_3
ρ_1	1	1	1
ρ_2 $\hat{\rho}_2$	1	-1	1
$\hat{\rho}_3$	2	0	$^{-1}$
_			

Thank You