Topological Algorithms-III

Mustafa Hajij

Homotopy detection

Non-homotopic curves

Homotopic curves

Image :David Gu

Constructing the universal cover

Input mesh

Fundamental domain

Finite portion of the universal cover

Image :David Gu

A curve in the original surface can be lifted to the universal covering space

A curve in the original surface can be lifted to the universal covering space

A closed non-trivial loop can be lifted to an open path in the universal covering space

A curve in the original surface can be lifted to the universal covering space

A closed non-trivial loop can be lifted to an open path in the universal covering space

A curve in the original surface can be lifted to the universal covering space

A closed non-trivial loop can be lifted to an open path in the universal covering space

Key idea : many topological problems can be solved on the universal cover easier than on the original surface.

Homotopy detection

Homotopically trivial loops are lifted to closed loops in the covering space.

Homotopy detection

Homotopically non-trivial loops are lifted to open curves in the covering space.

The Shortest Loop Given a non-trivial *a* loop on a surface, write an algorithm that computes a loop b in the same homotopy class of a such that b is as short as possible.

Image :David Gu

The Shortest Loop

Given a non-trivial *a* loop on a surface, write an algorithm that computes a loop *b* in the same homotopy class of *a* such that *b* is as short as possible.

The universal cover and the fundamental domain

Fix a vertex v and loop a that passes through and we want to find the shortest loop homotopic to a that passes through v.

In general let \overline{M} be the universal covering space of a surface M and let $p: \overline{M} \to M$ be a covering map.

In general let \overline{M} be the universal covering space of a surface M and let $p: \overline{M} \to M$ be a covering map. Then there is a one to one correspondence between the pre-image of $q, p^{-1}(q)$, and the the equivalenc homotopy classes of loops in M starting at $q, \pi(M, q)$.

In general let \overline{M} be the universal covering space of a surface M and let $p: \overline{M} \to M$ be a covering map. Then there is a one to one correspondence between the pre-image of $q, p^{-1}(q)$, and the the equivalenc homotopy classes of loops in M starting at $q, \pi(M, q)$.

$$\phi: p^{-1}(q) \to \pi(M, q)$$

In general let \overline{M} be the universal covering space of a surface M and let $p: \overline{M} \to M$ be a covering map. Then there is a one to one correspondence between the pre-image of $q, p^{-1}(q)$, and the the equivalenc homotopy classes of loops in M starting at $q, \pi(M, q)$.

$$\phi: p^{-1}(q) \to \pi(M, q)$$

Fix a point \hat{q}_0 in $p^{-1}(q)$ for any \hat{q}_k in $p^{-1}(q)$ we can find a path $\hat{\gamma}: I \to \overline{M}$ connecting \hat{q}_0 and \hat{q}_k .

In general let \overline{M} be the universal covering space of a surface M and let $p: \overline{M} \to M$ be a covering map. Then there is a one to one correspondence between the pre-image of $q, p^{-1}(q)$, and the the equivalenc homotopy classes of loops in M starting at $q, \pi(M, q)$.

$$\phi: p^{-1}(q) \to \pi(M, q)$$

Fix a point \hat{q}_0 in $p^{-1}(q)$ for any \hat{q}_k in $p^{-1}(q)$ we can find a path $\hat{\gamma}: I \to \overline{M}$ connecting \hat{q}_0 and \hat{q}_k . The projection of $\hat{\gamma}$ is a loop in M that passes from q.

$$\phi(\hat{q}_k) = [p(\hat{\gamma})]$$

Assume that \overline{M} is the universal cover of M and $p: \overline{M} \to M$ is the projection.

Assume that \overline{M} is the universal cover of M and $p: \overline{M} \to M$ is the projection. The preimage of the vertex v is the set

$$p^{-1}(q) = \{\bar{v}_0, \bar{v}_1, \dots\}$$

Assume that \overline{M} is the universal cover of M and $p: \overline{M} \to M$ is the projection. The preimage of the vertex v is the set

$$p^{-1}(q) = \{\bar{v}_0, \bar{v}_1, \dots\}$$

Suppose that γ is a non-trivial loops that passes through v. Then we left γ to the universal cover space of M, $\bar{\gamma} \subset \bar{M}$ such that

$$\partial \bar{\gamma} = \{ \bar{v}_0, \bar{v}_k \}$$

Assume that \overline{M} is the universal cover of M and $p: \overline{M} \to M$ is the projection. The preimage of the vertex v is the set

$$p^{-1}(q) = \{\bar{v}_0, \bar{v}_1, \dots\}$$

Suppose that γ is a non-trivial loops that passes through v. Then we left γ to the universal cover space of M, $\bar{\gamma} \subset \bar{M}$ such that

$$\partial \bar{\gamma} = \{ \bar{v}_0, \bar{v}_k \}$$

Any other loop γ_1 that passes through the vertex v and homotopic to γ will also satisfy

$$\partial \bar{\gamma}_1 = \{ \bar{v}_0, \bar{v}_k \}$$

Assume that \overline{M} is the universal cover of M and $p: \overline{M} \to M$ is the projection. The preimage of the vertex v is the set

$$p^{-1}(q) = \{\bar{v}_0, \bar{v}_1, \dots\}$$

Suppose that γ is a non-trivial loops that passes through v. Then we left γ to the universal cover space of $M, \, \bar{\gamma} \subset \overline{M}$ such that

$$\partial \bar{\gamma} = \{ \bar{v}_0, \bar{v}_k \}$$

Any other loop γ_1 that passes through the vertex v and homotopic to γ will also satisfy

$$\partial \bar{\gamma}_1 = \{ \bar{v}_0, \bar{v}_k \}$$

And vice versa, any path in the universal cover that connects between \bar{v}_0 and \bar{v}_k lifts to a loop at v that is homotopic to γ .

Assume that \overline{M} is the universal cover of M and $p: \overline{M} \to M$ is the projection. The preimage of the vertex v is the set

$$p^{-1}(q) = \{\bar{v}_0, \bar{v}_1, \dots\}$$

Suppose that γ is a non-trivial loops that passes through v. Then we left γ to the universal cover space of $M, \, \bar{\gamma} \subset \overline{M}$ such that

$$\partial \bar{\gamma} = \{ \bar{v}_0, \bar{v}_k \}$$

Any other loop γ_1 that passes through the vertex v and homotopic to γ will also satisfy

$$\partial \bar{\gamma}_1 = \{ \bar{v}_0, \bar{v}_k \}$$

And vice versa, any path in the universal cover that connects between \bar{v}_0 and \bar{v}_k lifts to a loop at v that is homotopic to γ .

The shortest loop though v corresponds to the shortest path connecting \bar{v}_0 and \bar{v}_k .

Input : A base vertex v a non-trivial loop γ through v on a mesh M Output: the shortest loop through v and homotopic to γ

Input : A base vertex v a non-trivial loop γ through v on a mesh M Output: the shortest loop through v and homotopic to γ 1-Compute a finite portion of the universal cover \overline{M} of M.

Input : A base vertex v a non-trivial loop γ through v on a mesh M Output: the shortest loop through v and homotopic to γ 1-Compute a finite portion of the universal cover \overline{M} of M.

2- Compute the preimage of v

$$p^{-1}(v) = \{\bar{v}_0, \bar{v}_1, \dots\}$$

Input : A base vertex v a non-trivial loop γ through v on a mesh M Output: the shortest loop through v and homotopic to γ 1-Compute a finite portion of the universal cover \overline{M} of M. 2- Compute the preimage of v

$$p^{-1}(v) = \{\bar{v}_0, \bar{v}_1,\}$$

3-Lift γ to $\bar{\gamma}$ in \bar{M} such that

$$\partial \bar{\gamma} = \{ \bar{v}_0, \bar{v}_k \}$$

Input : A base vertex v a non-trivial loop γ through v on a mesh M Output: the shortest loop through v and homotopic to γ 1-Compute a finite portion of the universal cover \overline{M} of M. 2- Compute the preimage of v

$$p^{-1}(v) = \{\bar{v}_0, \bar{v}_1, \dots\}$$

3-Lift γ to $\bar{\gamma}$ in \bar{M} such that

$$\partial \bar{\gamma} = \{ \bar{v}_0, \bar{v}_k \}$$

4-Compute the shortest path $\overline{\Gamma}$ in the universal cover space \overline{M}

$$\bar{\Gamma} = \{\bar{v}_0, \bar{v}_k\}$$

using Dijkstra's algorithm.

Input : A base vertex v a non-trivial loop γ through v on a mesh M Output: the shortest loop through v and homotopic to γ 1-Compute a finite portion of the universal cover \overline{M} of M. 2- Compute the preimage of v

$$p^{-1}(v) = \{\bar{v}_0, \bar{v}_1, \dots\}$$

3-Lift γ to $\bar{\gamma}$ in \bar{M} such that

$$\partial \bar{\gamma} = \{ \bar{v}_0, \bar{v}_k \}$$

4-Compute the shortest path $\overline{\Gamma}$ in the universal cover space \overline{M}

$$\bar{\Gamma} = \{\bar{v}_0, \bar{v}_k\}$$

using Dijkstra's algorithm. 5-The projection of the shortest path

 $\Gamma = p(\bar{\Gamma})$

is the shortest loop through v homotopic to γ

Example

Example

Input : A non-trivial loop γ on a mesh MOutput: the shortest loop on M homotopic to γ

Input : A non-trivial loop γ on a mesh MOutput: the shortest loop on M homotopic to γ For each vertex w on M do

Input : A non-trivial loop γ on a mesh MOutput: the shortest loop on M homotopic to γ For each vertex w on M do

Find the nearest vertex v on γ ;

Input : A non-trivial loop γ on a mesh MOutput: the shortest loop on M homotopic to γ For each vertex w on M do Find the nearest vertex v on γ ;

Find the shortest path connecting v and w, denoted as γ_0 ;

Input : A non-trivial loop γ on a mesh MOutput: the shortest loop on M homotopic to γ For each vertex w on M do Find the nearest vertex v on γ ; Find the shortest path connecting v and w, denoted as γ_0 ; Construct the loop

$$\Gamma_w = \gamma_0 \gamma \gamma_0^{-1}$$

Input : A non-trivial loop γ on a mesh MOutput: the shortest loop on M homotopic to γ For each vertex w on M do Find the nearest vertex v on γ ; Find the shortest path connecting v and w, denoted as γ_0 ; Construct the loop

$$\Gamma_w = \gamma_0 \gamma \gamma_0^{-1}$$

Compute the shortest loop through w, homotopic to Γ_w

Input : A non-trivial loop γ on a mesh MOutput: the shortest loop on M homotopic to γ For each vertex w on M do Find the nearest vertex v on γ ; Find the shortest path connecting v and w, denoted as γ_0 ; Construct the loop

$$\Gamma_w = \gamma_0 \gamma \gamma_0^{-1}$$

Compute the shortest loop through w, homotopic to Γ_w end

Input : A non-trivial loop γ on a mesh MOutput: the shortest loop on M homotopic to γ For each vertex w on M do Find the nearest vertex v on γ ; Find the shortest path connecting v and w, denoted as γ_0 ; Construct the loop

$$\Gamma_w = \gamma_0 \gamma \gamma_0^{-1}$$

Compute the shortest loop through w, homotopic to Γ_w end

Select the loop with the minimal length

$$\Gamma = \min_{w \in M} \Gamma_w$$

Algorithms presented here can be found in :

D. Gu and S. Yau, Computational conformal geometry. Somerville, Mass, USA: International Press, 2008.