The Shape of an Image: A Study of Mapper on Images

Alejandro Robles Mustafa Hajij Paul Rosen University of South Florida

MOTIVATION

Scalar function is defined on planar domain

We would like to extract a topological fingerprint

<u>WHY?</u>

Topological fingerprint as a feature vector is translation, rotation, and resolution invariant

PROCESS OVERVIEW

Convert the scalar field into a landscape

Segment the domain into topological regions by value Use the relationship between those regions to describe the topology of the domain

TOPOLOGICAL FEATURES

TOPOLOGY OF THE FIELD (CONTOUR TREE)

MAPPER

Computation of approximate topology More flexible and robust implementation & runs faster than contour tree

Ability to control approximation resolution through modifying the "cover"

THE CONSTRUCTION OF MAPPER ON A ID FUNCTION Consider a scalar function $f : X \rightarrow [a,b]$

THE CONSTRUCTION OF MAPPER ON A 1D FUNCTION The range [a,b] is covered by the two intervals A,B

THE CONSTRUCTION OF MAPPER ON A 1D FUNCTION This gives a decomposition of the domain the domain X

THE CONSTRUCTION OF MAPPER ON A 1D FUNCTION Inverse of A consists of 2 connected components α_1 and α_2 Inverse of B consists of 3 connected components β_1 , β_2 and β_3

THE CONSTRUCTION OF MAPPER ON A ID FUNCTION A **nodes** represents each connected component

An edge is inserted whenever 2 connected components overlap

MAPPER RESOLUTION

The construction of mapper depends on the cover chosen for the range [a,b] of the scalar function.

COMPARISON TO CONTOUR TREE

The contour tree of a 1d function.

<u>COMPUTATION OF MAPPER ON IMAGES</u> Covers are first extracted as even and odd covers, plus overlap used later.

Input

Even

Odd

Overlap

FINDING VERTICES

Covers are converted to graphs using 1 of 2 schemes, and connect components identified using either DFS or BFS

FINDING EDGES

Pixels from overlapping regions cause edges between connected components in adjacent covers

Overlap

<u>Results</u>

MAPPER ON IMAGES

ADJUSTING MAPPER RESOLUTION

SIMPLIFICATION OF MAPPER GRAPHS

MAPPER PERFORMANCE ON 4 DIFFERENT IMAGES

ADDITIONAL RESULTS

<u>Conclusions</u>

Mapper on image is fast and flexible to compute

Topological fingerprint could serve as a good feature vector, given that it is translation, rotation, and image resolution invariant

<u>Funding Acknowledgement:</u> National Science Foundation (IIS-1513616)

<u>Contact:</u> Paul Rosen <u>prosen@usf.edu</u> <u>http://www.cspaul.com</u>

