An introduction to persistent homology

MUSTAFA HAJIJ

Part I: Scalar Functions

Persistence Diagram of a scalar function

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

hwie

Persistence Diagram of a scalar function

```
Algorithm 3: Calculating discrete o-dimensional persistent homology
Require: A discrete sample \(\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}\) of a function \(f: \mathbb{D} \subseteq \mathbb{R} \rightarrow \mathbb{R}\)
    function PersistentHomology \((f)\)
        \(\mathrm{U} \leftarrow \varnothing \quad \triangleright\) Initialize an empty union-find structure
        Sort the value tuples in ascending order, such that \(y_{1} \geq y_{2} \geq \ldots\)
        for Tuple \(\left(x_{i}, y_{i}\right)\) of \(f\) do
            if \(y_{i-1}>y_{i}\) and \(y_{i+1}>y_{i}\) then \(\quad \triangleright y_{i}\) is a local minimum
                    U.add(i)
            else if \(y_{i-1}<y_{i}\) and \(y_{i+1}<y_{i}\) then \(\quad \triangleright y_{i}\) is a local maximum
            \(c \leftarrow \operatorname{U} \cdot \operatorname{get}(i-1)\)
            \(d \leftarrow \operatorname{U.get}(i+1) \quad \triangleright\) Get second connected component
            U.merge \((c, d) \quad \triangleright\) Merge the two connected components meeting at \(y_{i}\)
            else
            \(c \leftarrow \operatorname{U} . \operatorname{get}(i-1)\)
            \(\mathrm{U}[c] \leftarrow \mathrm{U}[c] \cup i \quad \triangleright\) Add \(y_{i}\) to the current connected component
            end if
        end for
        return U
    end function
```


The pairing algorithm

- Input : a discrete sample $P=\left\{p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)\right\}$ representing a scalar function f .
- A collection of paired points.

1. Initiate an empty UnionFind U.
2. Sort P with respect the y values.
3. For every $p_{i}=\left(x_{i}, y_{i}\right)$ in P :
4. If $y_{i-1}>y_{i}$ and $y_{i+1}>y_{i}$ then:
5. U.add(i)
6. Set the birth of i to y_{i}
7. Else if $y_{i-1}<y_{i}$ and $y_{i+1}<y_{i}$ then:
8. $\mathrm{c}=\mathrm{U} . \operatorname{get}(\mathrm{i}-1)$
9. $d=U . \operatorname{get}(i+1)$
10. U.merge(c,d)
11. Pair i with c or d (choose the one that was born later)
12. Else:
13. $c=U . \operatorname{get}(i-1)$
14. $\mathrm{U}(\mathrm{c}):=\mathrm{U}(\mathrm{c})$ union i

Part II : Point Clouds Introduction to VR and Cech complexes

Nerve of a topological space

Given a set of points P sampled from a space X , how can we recover the topological features of the original space X from the point cloud P ?

Nerve of a topological space

We want a discretized structure that capture the shape of the space and we want a reasonable way that is subtle enough to measure this shape.

Nerve of a topological space

Čech complex

Given a point cloud X in some metric space and a number $\varepsilon>0$, the Čech complex C_{ε} is the simplicial complex whose simplices are constructed as follows :

For each subset Y of X , form a $(\varepsilon / 2)$-ball around each point in Y , and include Y as a simplex ,of dimension $|\mathrm{Y}|$, if there is a common point contained in all of the balls in Y .

The Cech complex approximates the topological space

Theorem: The homotopy type of S_{ϵ} and C_{ε} are the same.

The Cech complex approximates the topological space

Theorem: The homotopy type of S_{ϵ} and C_{ε} are the same.

Čech complex size

For each subset Y of X , form a $(\varepsilon / 2)$-ball around each point in Y , and include Y as a simplex ,of dimension $|\mathrm{Y}|$, if there is a common point contained in all of the balls in Y .

What is the computational problem in constructing a Čech complex?

If we have a point cloud set X of size 40 then we have to check all subsets of X of size 40 . This is $2^{\wedge}\{40\}$. Very slow!

Vietoris-Rips complex

Let X is a subset of a metric space d and let $\epsilon>0$. The Vietoris-Rips complex is constructed as follows :
(1) For each point in X, make it as a 0 -simplex.
(2) For each pair $x_{1}, x_{2} \in X$, make a 1 -simplex $\left(\left[x_{1}, x_{2}\right]\right)$ if $d\left(x_{1}, x_{2}\right) \leq \epsilon$.
(3) For $x_{1}, x_{2}, \cdots, x_{n} \in X$, make an $(n-1)$-simplex with vertices $x_{1}, x_{2}, \cdots, x_{n}$. Then, $d(x i, x j) \leq \epsilon$ for all $0 \leq i, j \leq n$; that is, if all the points are within a distance of ϵ from each other.

This complex is denoted by $\operatorname{VR}(X, \epsilon)$

Čech complex and VR complex

Comparison between the two complexes :

Note that the VR complex does not necessarily have the same homotopy type of the space of the union of ball.

Čech complex and VR complex

What is the relation between the Čech complex and VR complex ?

Theorem: For all $\varepsilon>0$, the following inclusions hold

$$
C_{\varepsilon} \subset V R_{\varepsilon} \subset C_{2 \varepsilon}
$$

Čech complex and VR complex

What is the relation between the Čech complex and VR complex ?

Theorem: For all $\varepsilon>0$, the following inclusions hold

$$
C_{\varepsilon} \subset V R_{\varepsilon} \subset C_{2 \varepsilon}
$$

So the VR complex forms a good approximation of the Čech complex.

Measuring the shape

Now that we have a good representation of the space, how do we "measure" it?

Measuring the shape

Now that we have a good representation of the space, how do we "measure" it?

Answering this question can be done using a tool in topology called Homology.

Measuring the shape

Now that we have a good representation of the space, how do we "measure" it?

Answering this question can be done using a tool in topology called Homology.

Homology is computable via linear algebra

Measuring the shape

Now that we have a good representation of the space, how do we
"measure" it?

Answering this question can be done using a tool in topology called Homology.

Homology is computable via linear algebra

Roughly speaking, homology counts :

- The number of connected components,
- The number of cycles
- The Number o voids in a space

Measuring the shape

Now that we have a good representation of the space, how do we "measure" it?

Answering this question can be done using a tool in topology called Homology.

Homology is computable via linear algebra

Roughly speaking, homology counts :

- The number of connected components,
- The number of cycles
- The Number o voids in a space

This space here has 1 connected component and 3 cycles

What size do we consider?

We will come back
to this question
later.

Remarks on computing the Vietoris-Rips complex

Given a point cloud X we want to construct a filtration F using VR construction.

Remarks on computing the Vietoris-Rips complex

Given a point cloud X we want to construct a filtration F using VR construction.
We will utilize the following easy fact :
Let $\varepsilon_{1} \leq \varepsilon_{2}$ then $V R\left(X, \varepsilon_{1}\right) \leq V R\left(X, \varepsilon_{2}\right)$

Remarks on computing the Vietoris-Rips complex

Given a point cloud X we want to construct a filtration F using VR construction.
We will utilize the following easy fact :
Let $\varepsilon_{1} \leq \varepsilon_{2}$ then $V R\left(X, \varepsilon_{1}\right) \leq V R\left(X, \varepsilon_{2}\right)$
This allows us in practice to compute the VR complex for some maximum scale a $\in R$ and then extract the complex at any lower scale b less than a.

Remarks on computing the Vietoris-Rips complex

Given a point cloud X we want to construct a filtration F using VR construction.
We will utilize the following easy fact :
Let $\varepsilon_{1} \leq \varepsilon_{2}$ then $V R\left(X, \varepsilon_{1}\right) \leq V R\left(X, \varepsilon_{2}\right)$
This allows us in practice to compute the VR complex for some maximum scale a $\in R$ and then extract the complex at any lower scale b less than a.

Given a $\operatorname{VR}(X, a)$, suppose that we want to compute $\operatorname{VR}(X, b)$ for b less than a. How do we compute determine the simplices from $\operatorname{VR}(\mathrm{X}, \mathrm{a})$ that belongs to $\operatorname{VR}(\mathrm{X}, \mathrm{b})$?

Remarks on computing the Vietoris-Rips complex

Given a complex $V R(X, \varepsilon)$ define the weight function $w: V R(X, \varepsilon) \rightarrow \mathbb{R}$

$$
\omega(\sigma)= \begin{cases}0, & \operatorname{dim}(\sigma) \leq 0 \\ \mathrm{~d}(u, v), & \sigma=\{u, v\} \\ \max _{\tau \subset \sigma} \omega(\tau), & \text { otherwise }\end{cases}
$$

That is, the weight $\omega(\sigma)$ is equal to the maximum of the weights (lengths) of all its edges.

After defining the weight function on $V R\left(X, \varepsilon_{2}\right)$ we sort the simplices according to their weights, extracting the VR complex for any $\varepsilon_{1} \leq \varepsilon_{2}$ as a prefix of this ordering.

This gives a filtration of $\operatorname{VR}\left(X, \varepsilon_{2}\right)$

The relation between neighborhood graph and the Vietoris-Rips complex

The data (left) has the $\boldsymbol{\epsilon}$-neighborhood graph (middle).
This is precisely the VR complex (right) at that same resolution.

The relation between neighborhood graph and the Vietoris-Rips complex

The data (left) has the $\boldsymbol{\epsilon}$-neighborhood graph (middle).
This is precisely the VR complex (right) at that same resolution.
Question: given the ϵ-neighborhood (middle), how can we recover the VR complex from it (right) ?

The relation between neighborhood graph and the Vietoris-Rips complex

The data (left) has the $\boldsymbol{\epsilon}$-neighborhood graph (middle).
This is precisely the VR complex (right) at that same resolution.
Question: given the ϵ-neighborhood (middle), how can we recover the VR complex from it (right) ?
Answer: Higher dimensional simplices recovered from the cliques of the $\boldsymbol{\epsilon}$-neighborhood graph.

