
An introduction to persistent homology
Computing the 0-barcodes

MUSTAFA HAJIJ

Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at

each point just like what we did the h-clustering
single linkage clustering algorithm

• We also create a bar for each point and the length
of that bar represents the radius of the disk
around each point.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

r=0
r=0

Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at

each point just like what we did the h-clustering
single linkage clustering algorithm

• We also create a bar for each point and the length
of that bar represents the radius of the disk
around each point.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

r=1

p4 and p5 merge.
We record this event in the bars
by deciding not to grow one of them anymore (death event)

r=1

Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at

each point just like what we did the h-clustering
single linkage clustering algorithm

• We also create a bar for each point and the length
of that bar represents the radius of the disk
around each point.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

r=1

p4 and p5 merge.
We record this event in the bars
by deciding not to grow one of them anymore (death event)

r=1

Here we chose the
connected component
of p4 to die and p5 to
live (the choice is
random). Now p5
represents the
connected component
of p5 and p4 but we will
still call it p5

Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at

each point just like what we did the h-clustering
single linkage clustering algorithm

• We also create a bar for each point and the length
of that bar represents the radius of the disk
around each point.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

r=3

p1 and p2 merge.
We record this event in the bars
by deciding not to grow one of them anymore (death event)

r=3

Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at

each point just like what we did the h-clustering
single linkage clustering algorithm

• We also create a bar for each point and the length
of that bar represents the radius of the disk
around each point.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

r=3

p1 and p2 merge.
We record this event in the bars
by deciding not to grow one of them anymore (death event)

r=3

Here we chose the
connected component
of p2 to die and the
connected component
of p1 to live. Now p1
(the one that lives)
represents the
connected component
of p1 and p2.

Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at

each point just like what we did the h-clustering
single linkage clustering algorithm

• We also create a bar for each point and the length
of that bar represents the radius of the disk
around each point.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

r=4

The connected component
(p5,p4) and the point p3 merge
we record this event in the bars
by deciding to stop growing one bar of these connected components

r=4

Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at

each point just like what we did the h-clustering
single linkage clustering algorithm

• We also create a bar for each point and the length
of that bar represents the radius of the disk
around each point.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

r=5

The connected component
(p1,p2) and the connected component
(p3,p4,p5) merge we record this event in the bars

by deciding to stop growing one bar of these connected components

r=5

Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at

each point just like what we did the h-clustering
single linkage clustering algorithm

• We also create a bar for each point and the length
of that bar represents the radius of the disk
around each point.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

r=5

The connected component
(p1,p2) and the connected component
(p3,p4,p5) merge we record this event in the bars

by deciding to stop growing one bar of these connected components

r=5

Here we chose the
connected component
of (p1) to die and the
connected component
of p5 to live. Now p5
(the one that lives)
represents the
connected component
of p1, p2,p3,p4 and p5.

Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at

each point just like what we did the h-clustering
single linkage clustering algorithm

• We also create a bar for each point and the length
of that bar represents the radius of the disk
around each point.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

r=6

The connected component
(p6) and the connected component
(p1,p2 p3,p4,p5) merge we record this event in the bars

by deciding to stop growing one bar of these connected components

r=6

Persistence diagram
• The resulting diagram barcode is called the 0-barcode.
• The 0-barcode is a signature of the point cloud. It encodes topological and geometrical information

of the point cloud in meaningful way.
• Long bars represents natural connected components.
• Short bars represent points that are close to each other.
• If we change the point cloud by a little bit, and recompute the barcodes again then new
barcode is very close to the old one.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

Examples
• 3 long bars, everything else represent noise

Computed using ripser

http://live.ripser.org/

Examples
• 4 long bars, everything else represent noise

Computed using ripser

http://live.ripser.org/

Examples
• 4 long bars, everything else represent noise

Computed using ripser

http://live.ripser.org/

Ripser
http://live.ripser.org/

Barcode when a distance matrix is given

A B C D E F

A
B
C
D
E

In this case, the points
Coordinate are not given
Explicitly. Only the distance
between the points are given

The same computation can be
carried out

Recall : Kruskal’s Algorithm

Let 𝐺 = (𝑉, 𝐸, 𝑤) be a connected weighted graph.

1. Set 𝑉𝑇 𝑡𝑜 𝑏𝑒 𝑉, 𝑆𝑒𝑡 𝐸𝑇 = {}. Let 𝑆 = 𝐸
2. While 𝑆 is not empty and 𝑇 is not a spanning tree

1. Select an edge e from 𝑆 with the minimum weight and delete e from 𝑆.
2. If 𝑒 connects two separate trees of 𝑇 then add 𝑒 to 𝐸𝑇

Informally, the algorithm can be given by the following three steps :

Algorithm for computing the 0-barcode
Data: A distance matrix M

Result:
1-Create the complete graph G associated with the matrix M
2-Initiate an empty UnionFind U.
3- for each node vi in G :

1. U.add(vi)
2. Create a bar Bi with birth = 0 and death = ∞

4-Sort the edges of G in increasing order
5-for each edge ei in G do:

1. If ei connects two different sets C1 and C2 then
1. Join C1 and C2
2. Set the death of B1 to w(ei)

The complete graph
associated with a
distance matrix M :
complete graph with
e(i,j)=M(i,j).

Algorithm for computing the 0-barcode
Data: A distance matrix M

Result:
1-Create the complete graph G associated with the matrix M
2-Initiate an empty UnionFind U.
3- for each node vi in G :

1. U.add(vi)
2. Create a bar Bi with birth = 0 and death = ∞

4-Sort the edges of G in increasing order
5-for each edge ei in G do:

1. If ei connects two different sets C1 and C2 then
1. Join C1 and C2
2. Set the death of B1 to w(ei)

This is essentially Kruskal’s algorithm

The complete graph
associated with a
distance matrix M :
complete graph with
e(i,j)=M(i,j).

Algorithm for computing the 0-barcode with a given
max value

Data: A distance matrix M, maximal value ε

Result:
1-Create the ε-neighborhood graph of M
2-Initiate an empty UnionFind U.
3- for each node vi in G :

1. U.add(vi)
2. Create a bar Bi with birth = 0 and death = ∞

4-Sort the edges of G in increasing order
5-for each edge ei in G do:

1. If ei connects two different sets C1 and C2 then
1. Join C1 and C2
2. Set the death of B1 to w(ei)

This is essentially Kruskal’s algorithm

The relationship between 0-persistent homology and
single linkage clustering

Consider the connected components of the ɛ-neighborhood graph as we continuously increase ɛ from zero to infinity.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Recall: Single Linkage Hierarchical Clustering and the ɛ- Neighborhood Graph

Every point is a connected
component

When ɛ is a little larger we start
some clusters starts to get form

When ɛ is even larger we have
few clusters

As the clusters get larger and larger

At some point all
points become a par
to of a single cluster

Consider the connected components of the ɛ-neighborhood graph as we continuously increase ɛ from zero to infinity.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Every point is a connected
component

When ɛ is a little larger some
clusters start to get form

When ɛ is even larger we have
few clusters

As the clusters get larger and larger

At some point all
points become a par
to of a single cluster

Recall: Single Linkage Hierarchical Clustering and the ɛ- Neighborhood Graph

Consider the connected components of the ɛ-neighborhood graph as we continuously increase ɛ from zero to infinity.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Every point is a connected
component

When ɛ is even larger we have
fewer clusters

At some point all
points become a par
to of a single cluster

When ɛ is a little larger some
clusters start to get form

Recall: Single Linkage Hierarchical Clustering and the ɛ- Neighborhood Graph

Consider the connected components of the ɛ-neighborhood graph as we continuously increase ɛ from zero to infinity.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Every point is a connected
component

When ɛ is large
enough all points
become a part of a
single cluster

When ɛ is even larger we have
fewer clusters

When ɛ is a little larger some
clusters start to get form

Recall: Single Linkage Hierarchical Clustering and the ɛ- Neighborhood Graph

Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm

Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm

Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm

Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm

Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm

Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm

Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm

Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm

Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm

Relationship between 0-persistent homology and
single linkage clustering

Essentially dendrogram of a data set in the single linkage clustering at a specific distance ε and the
0-barcode of a data set at a certain max distance encode the exact same information (just represented differently).

Weighted graph -> distance matrix using Dijekstra algorithm -> 0-barcode

0-barcode of a weighted graph

Higher dimensional barcodes

1-barcodes-examples

Persistence Diagram of a scalar function

1-barcodes-examples

Persistence Diagram of a scalar function

1-barcodes-examples

