An introduction to persistent homology Computing the 0-barcodes

Persistence diagram

- Consider the following point cloud
- Around each point we will grow a disk centered at each point just like what we did the h-clustering single linkage clustering algorithm
- We also create a bar for each point and the length of that bar represents the radius of the disk around each point.

Persistence diagram

- Consider the following point cloud
- Around each point we will grow a disk centered at each point just like what we did the h-clustering single linkage clustering algorithm
- We also create a bar for each point and the length of that bar represents the radius of the disk around each point.

Persistence diagram

- Consider the following point cloud
- Around each point we will grow a disk centered at each point just like what we did the h-clustering single linkage clustering algorithm
- We also create a bar for each point and the length of that bar represents the radius of the disk around each point.


```p2
```



```p4
8
p5
p4 and p5 merge.
We record this event in the bars
by deciding not to grow one of them anymore (death event)

\section*{Persistence diagram}
- Consider the following point cloud
- Around each point we will grow a disk centered at each point just like what we did the h-clustering single linkage clustering algorithm
- We also create a bar for each point and the length of that bar represents the radius of the disk around each point.

p1 and p2 merge.
We record this event in the bars
by deciding not to grow one of them anymore (death event)

\section*{Persistence diagram}
- Consider the following point cloud
- Around each point we will grow a disk centered at each point just like what we did the h -clustering single linkage clustering algorithm
- We also create a bar for each point and the length of that bar represents the radius of the disk around each point.


\section*{Persistence diagram}
- Consider the following point cloud
- Around each point we will grow a disk centered at each point just like what we did the h-clustering single linkage clustering algorithm
- We also create a bar for each point and the length of that bar represents the radius of the disk around each point.


The connected component ( \(\mathrm{p} 5, \mathrm{p} 4\) ) and the point p 3 merge we record this event in the bars
by deciding to stop growing one bar of these connected components

\section*{Persistence diagram}
- Consider the following point cloud
- Around each point we will grow a disk centered at each point just like what we did the h-clustering single linkage clustering algorithm
- We also create a bar for each point and the length of that bar represents the radius of the disk around each point.


The connected component ( \(\mathrm{p} 1, \mathrm{p} 2\) ) and the connected component

\section*{Persistence diagram}
- Consider the following point cloud
- Around each point we will grow a disk centered at each point just like what we did the h-clustering single linkage clustering algorithm
- We also create a bar for each point and the length of that bar represents the radius of the disk around each point.


The connected component ( \(\mathrm{p} 1, \mathrm{p} 2\) ) and the connected component ( \(\mathrm{p} 3, \mathrm{p} 4, \mathrm{p} 5\) ) merge we record this event in the bars by deciding to stop growing one bar of these connected components

\section*{Persistence diagram}
- Consider the following point cloud
- Around each point we will grow a disk centered at each point just like what we did the h-clustering single linkage clustering algorithm
- We also create a bar for each point and the length of that bar represents the radius of the disk around each point.


The connected component (p6) and the connected component ( \(\mathrm{p} 1, \mathrm{p} 2 \mathrm{p} 3, \mathrm{p} 4, \mathrm{p} 5\) ) merge we record this event in the bars by deciding to stop growing one bar of these connected components

\section*{Persistence diagram}
- The resulting diagram barcode is called the 0-barcode.
- The 0 -barcode is a signature of the point cloud. It encodes topological and geometrical information of the point cloud in meaningful way.
- Long bars represents natural connected components.
- Short bars represent points that are close to each other.
- If we change the point cloud by a little bit, and recompute the barcodes again then new barcode is very close to the old one.


\section*{Examples}
- 3 long bars, everything else represent noise


\section*{Examples}
- 4 long bars, everything else represent noise


\section*{Examples}
- 4 long bars, everything else represent noise


\section*{Ripser}
http://live.ripser.org/

\section*{Ripser}

Load a distance matrix - to compute Vietoris-Rips persistence barcodes in dimensions 1 to 2 and up to distance
Choose File No file chosen
Persistence intervals in dimension 1:


Elapsed time: 2.738 seconds

\section*{Barcode when a distance matrix is given}

In this case, the points Coordinate are not given Explicitly. Only the distance between the points are given


The same computation can be carried out

\section*{Recall : Kruskal's Algorithm}

Let \(G=(V, E, w)\) be a connected weighted graph.

Informally, the algorithm can be given by the following three steps :
1. Set \(V_{T}\) to be \(V\), Set \(E_{T}=\{ \}\). Let \(S=E\)
2. While \(S\) is not empty and \(T\) is not a spanning tree
1. Select an edge e from \(S\) with the minimum weight and delete e from \(S\).
2. If \(e\) connects two separate trees of \(T\) then add \(e\) to \(E_{T}\)

\section*{Algorithm for computing the 0-barcode}

Data: A distance matrix M

Result:
1-Create the complete graph \(G\) associated with the matrix \(M\) \(\qquad\) The complete graph associated with a
2-Initiate an empty UnionFind U.
3 - for each node vi in G :
1. U.add(vi)
2. Create a bar Bi with birth \(=0\) and death \(=\infty\) distance matrix M : complete graph with \(e(i, j)=M(i, j)\).

4-Sort the edges of G in increasing order
5 -for each edge ei in \(G\) do:
1. If ei connects two different sets C 1 and C 2 then
1. Join C 1 and C 2
2. Set the death of B1 to w(ei)

\section*{Algorithm for computing the 0-barcode}

Data: A distance matrix M

Result:
1-Create the complete graph \(G\) associated with the matrix \(M\) \(\qquad\) The complete graph associated with a
2-Initiate an empty UnionFind U.
3 - for each node vi in G :
1. U.add(vi)
2. Create a bar Bi with birth \(=0\) and death \(=\infty\) distance matrix M : complete graph with \(e(i, j)=M(i, j)\).

4-Sort the edges of G in increasing order
5 -for each edge ei in G do:
1. If ei connects two different sets C 1 and C 2 then
1. Join C 1 and C 2
2. Set the death of B1 to w(ei)

This is essentially Kruskal's algorithm

\section*{Algorithm for computing the 0-barcode with a given max value}

Data: A distance matrix \(M\), maximal value \(\boldsymbol{\varepsilon}\)
Result:
1-Create the \(\boldsymbol{\varepsilon}\)-neighborhood graph of M
2-Initiate an empty UnionFind U.
3 - for each node vi in G :
1. U.add(vi)
2. Create a bar Bi with birth \(=0\) and death \(=\infty\)

4-Sort the edges of G in increasing order
5 -for each edge ei in \(G\) do:
1. If ei connects two different sets C 1 and C 2 then
1. Join C 1 and C 2
2. Set the death of B1 to w(ei)

This is essentially Kruskal's algorithm

The relationship between 0-persistent homology and single linkage clustering

\section*{Recall: Single Linkage Hierarchical Clustering and the \(\varepsilon\) - Neighborhood Graph}

Suppose that we are given a set of points \(X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}\) in \(R^{d}\) with a distance function \(d\) defined one them.

Consider the connected components of the \(\varepsilon\)-neighborhood graph as we continuously increase \(\varepsilon\) from zero to infinity.


Every point is a connected component

\section*{Recall: Single Linkage Hierarchical Clustering and the \(\varepsilon\) - Neighborhood Graph}

Suppose that we are given a set of points \(X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}\) in \(R^{d}\) with a distance function \(d\) defined one them.

Consider the connected components of the \(\varepsilon\)-neighborhood graph as we continuously increase \(\varepsilon\) from zero to infinity.

Every point is a connected component


When \(\varepsilon\) is a little larger some clusters start to get form

\section*{Recall: Single Linkage Hierarchical Clustering and the \(\varepsilon\) - Neighborhood Graph}

Suppose that we are given a set of points \(X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}\) in \(R^{d}\) with a distance function \(d\) defined one them.

Consider the connected components of the \(\varepsilon\)-neighborhood graph as we continuously increase \(\varepsilon\) from zero to infinity.

Every point is a connected component


When \(\varepsilon\) is a little larger some clusters start to get form


When \(\varepsilon\) is even larger we have fewer clusters

\section*{Recall: Single Linkage Hierarchical Clustering and the \(\varepsilon\) - Neighborhood Graph}

Suppose that we are given a set of points \(X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}\) in \(R^{d}\) with a distance function \(d\) defined one them.

Consider the connected components of the \(\varepsilon\)-neighborhood graph as we continuously increase \(\varepsilon\) from zero to infinity.


Every point is a connected component


When \(\varepsilon\) is even larger we have fewer clusters


When \(\varepsilon\) is large enough all points become a part of a single cluster

\section*{Single Linkage Hierarchical Clustering and the and Kruskal's algorithm}

\section*{Single Linkage Hierarchical Clustering and the and Kruskal's algorithm}


\section*{Single Linkage Hierarchical Clustering and the and Kruskal's algorithm}


\section*{Single Linkage Hierarchical Clustering and the and Kruskal's algorithm}


\section*{Single Linkage Hierarchical Clustering and the and Kruskal's algorithm}


Single Linkage Hierarchical Clustering and the and Kruskal's algorithm


Single Linkage Hierarchical Clustering and the and Kruskal's algorithm


Single Linkage Hierarchical Clustering and the and Kruskal's algorithm


Single Linkage Hierarchical Clustering and the and Kruskal's algorithm


\section*{Relationship between 0-persistent homology and single linkage clustering}

Essentially dendrogram of a data set in the single linkage clustering at a specific distance \(\boldsymbol{\varepsilon}\) and the 0 -barcode of a data set at a certain max distance encode the exact same information (just represented differently).

\section*{0-barcode of a weighted graph}

Weighted graph -> distance matrix using Dijekstra algorithm -> 0-barcode


\section*{Higher dimensional barcodes}


\section*{1-barcodes-examples}


\section*{1-barcodes-examples}

\section*{Persistence Diagram of a scalar function}



\section*{1-barcodes-examples}

Persistence Diagram of a scalar function
\(\qquad\)
```

