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Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at 

each point just like what we did the h-clustering 
single linkage clustering algorithm 

• We also create a bar for each point and the length 
of that bar represents the radius of the disk 
around each point.
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p4  and p5 merge. 
We record this event in the bars
by deciding not to grow one of them anymore (death event)

r=1



Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at 

each point just like what we did the h-clustering 
single linkage clustering algorithm 

• We also create a bar for each point and the length 
of that bar represents the radius of the disk 
around each point.
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p4  and p5 merge. 
We record this event in the bars
by deciding not to grow one of them anymore (death event)

r=1

Here we chose the 
connected  component 
of p4 to die and p5 to 
live (the choice is 
random). Now p5 
represents the 
connected component 
of p5 and p4 but we will 
still call it p5



Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at 
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Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at 

each point just like what we did the h-clustering 
single linkage clustering algorithm 

• We also create a bar for each point and the length 
of that bar represents the radius of the disk 
around each point.
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p1  and p2 merge. 
We record this event in the bars
by deciding not to grow one of them anymore (death event)

r=3

Here we chose the 
connected  component 
of p2 to die and the 
connected component 
of p1 to live. Now p1 
(the one that lives) 
represents the 
connected component 
of p1 and p2.



Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at 

each point just like what we did the h-clustering 
single linkage clustering algorithm 

• We also create a bar for each point and the length 
of that bar represents the radius of the disk 
around each point.
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The connected component
(p5,p4) and the point p3 merge
we record this event in the bars
by deciding to stop growing one bar of these connected components

r=4
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• Consider the following point cloud
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(p3,p4,p5) merge we record this event in the bars

by deciding to stop growing one bar of these connected components

r=5



Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at 

each point just like what we did the h-clustering 
single linkage clustering algorithm 

• We also create a bar for each point and the length 
of that bar represents the radius of the disk 
around each point.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

r=5

The connected component
(p1,p2) and the connected component
(p3,p4,p5) merge we record this event in the bars

by deciding to stop growing one bar of these connected components

r=5

Here we chose the 
connected  component 
of (p1) to die and the 
connected component 
of p5 to live. Now p5 
(the one that lives) 
represents the 
connected component 
of p1, p2,p3,p4 and p5.



Persistence diagram
• Consider the following point cloud
• Around each point we will grow a disk centered at 

each point just like what we did the h-clustering 
single linkage clustering algorithm 

• We also create a bar for each point and the length 
of that bar represents the radius of the disk 
around each point.
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The connected component
(p6) and the connected component
(p1,p2 p3,p4,p5) merge we record this event in the bars

by deciding to stop growing one bar of these connected components

r=6



Persistence diagram
• The resulting diagram barcode is called the 0-barcode. 
• The 0-barcode is a signature of the point cloud. It encodes topological and geometrical information 

of the point cloud in meaningful way.
• Long bars represents natural connected components.
• Short bars represent points that are close to each other.
• If we change the point cloud by a little bit, and recompute the barcodes again then new
barcode is very close to the old one.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6



Examples
• 3 long bars, everything else represent noise

Computed using ripser

http://live.ripser.org/
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Examples
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Ripser
http://live.ripser.org/



Barcode when a distance matrix is given

A B    C    D     E    F

A
B
C
D
E

In this case, the points 
Coordinate are not given 
Explicitly. Only the distance 
between the points are given 

The same computation can be 
carried out



Recall : Kruskal’s Algorithm

Let 𝐺 = (𝑉, 𝐸, 𝑤) be a connected weighted graph. 

1. Set 𝑉𝑇 𝑡𝑜 𝑏𝑒 𝑉, 𝑆𝑒𝑡 𝐸𝑇 = {}.  Let 𝑆 = 𝐸
2. While 𝑆 is not empty and 𝑇 is not a spanning tree

1. Select an edge e from 𝑆 with the minimum weight and delete e from 𝑆.
2. If 𝑒 connects two separate trees of 𝑇 then add 𝑒 to 𝐸𝑇

Informally, the algorithm can be given by the following three steps :



Algorithm for computing the 0-barcode
Data: A distance matrix M

Result:
1-Create the complete graph G associated with the matrix M 
2-Initiate an empty UnionFind U.
3- for each node vi in G :

1. U.add(vi)
2. Create a bar Bi with birth = 0 and death = ∞ 

4-Sort the edges of G in increasing order
5-for each edge ei in G do:

1. If ei connects two different sets C1 and C2 then
1. Join C1 and C2 
2. Set the death of B1 to w(ei)

The complete graph 
associated with a 
distance matrix M : 
complete graph with 
e(i,j)=M(i,j).



Algorithm for computing the 0-barcode
Data: A distance matrix M

Result:
1-Create the complete graph G associated with the matrix M 
2-Initiate an empty UnionFind U.
3- for each node vi in G :

1. U.add(vi)
2. Create a bar Bi with birth = 0 and death = ∞ 

4-Sort the edges of G in increasing order
5-for each edge ei in G do:

1. If ei connects two different sets C1 and C2 then
1. Join C1 and C2 
2. Set the death of B1 to w(ei)

This is essentially Kruskal’s algorithm

The complete graph 
associated with a 
distance matrix M : 
complete graph with 
e(i,j)=M(i,j).



Algorithm for computing the 0-barcode with a given 
max value

Data: A distance matrix M, maximal value ε

Result:
1-Create the ε-neighborhood graph of M
2-Initiate an empty UnionFind U.
3- for each node vi in G :

1. U.add(vi)
2. Create a bar Bi with birth = 0 and death = ∞ 

4-Sort the edges of G in increasing order
5-for each edge ei in G do:

1. If ei connects two different sets C1 and C2 then
1. Join C1 and C2 
2. Set the death of B1 to w(ei)

This is essentially Kruskal’s algorithm



The relationship between 0-persistent homology and 
single linkage clustering



Consider the connected components of the ɛ-neighborhood graph as we continuously increase ɛ from zero to infinity.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Recall: Single Linkage Hierarchical Clustering and the ɛ- Neighborhood Graph

Every point is a connected 
component

When ɛ is a little larger we start 
some clusters starts to get form  

When ɛ is even larger we have
few clusters 

As the clusters get larger and larger

At some point all 
points become a par 
to of a single cluster



Consider the connected components of the ɛ-neighborhood graph as we continuously increase ɛ from zero to infinity.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Every point is a connected 
component

When ɛ is a little larger some 
clusters start to get form  

When ɛ is even larger we have
few clusters 

As the clusters get larger and larger

At some point all 
points become a par 
to of a single cluster

Recall: Single Linkage Hierarchical Clustering and the ɛ- Neighborhood Graph



Consider the connected components of the ɛ-neighborhood graph as we continuously increase ɛ from zero to infinity.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Every point is a connected 
component

When ɛ is even larger we have
fewer clusters 

At some point all 
points become a par 
to of a single cluster

When ɛ is a little larger some 
clusters start to get form  

Recall: Single Linkage Hierarchical Clustering and the ɛ- Neighborhood Graph



Consider the connected components of the ɛ-neighborhood graph as we continuously increase ɛ from zero to infinity.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Every point is a connected 
component

When ɛ is large 
enough all points 
become a part of a 
single cluster

When ɛ is even larger we have
fewer clusters 

When ɛ is a little larger some 
clusters start to get form  

Recall: Single Linkage Hierarchical Clustering and the ɛ- Neighborhood Graph



Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm
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Single Linkage Hierarchical Clustering and the and Kruskal’s algorithm



Relationship between 0-persistent homology and 
single linkage clustering

Essentially dendrogram of a data set in the single linkage clustering at a specific distance ε and the 
0-barcode of a data set at a certain max distance encode the exact same information (just represented differently). 



Weighted graph -> distance matrix using Dijekstra algorithm -> 0-barcode

0-barcode of a weighted graph



Higher dimensional barcodes



1-barcodes-examples



Persistence Diagram of a scalar function

1-barcodes-examples



Persistence Diagram of a scalar function

1-barcodes-examples


