Applications of Persistent Homology

MUSTAFA HAJIJ

Part I
Clustering

Cilliate

Oxytricha trifallax, a species of ciliate, undergoes massive genome rearrangements during the development of a macronucleus (MAC) from a micronucleus (MIC).

Cilliate

Oxytricha trifallax, a species of ciliate, undergoes massive genome rearrangements during the development of a macronucleus (MAC) from a micronucleus (MIC).

It is used as a model organism to study DNA rearrangements.

Examples

$\operatorname{ctg} 7180000088096$

$0 \xrightarrow{\sim} 0$

ctg7180000069209

From Graphs to a Point Cloud To Filtration

From Graphs to a Point Cloud

Associate to every graph G a feature vector $P(G)$, a point in a Euclidean space, that represents the graph G.

From Graphs to a Point Cloud

The vector $P(G)$ is defined as follows.

Global Features Vector: $\operatorname{Pg}(\mathrm{G})=<\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}), \mathrm{CN}(\mathrm{G})>$
V(G) : \# of vertices,
$\mathrm{E}(\mathrm{G})$ \# of edges in Pg (G)
$C N(G)$: the size of the largest clique in G.
Valence Features Vector: Pv (G) : the valency of the vertices ordered decreasingly.
The Clique Vector: $\mathrm{Pc}(\mathrm{G})$: \# of cliques containing the vertex, in the same order of vertices of $\mathrm{Pv}(\mathrm{G})$.
$d=\max$ (valency)
Concatenate Os if $|\operatorname{Pv}(\mathrm{G})|<d$
$\mathrm{P}(\mathrm{G}) \in R^{2 \mathrm{~d}+3}$: concatenation of $\mathrm{Pg}(\mathrm{G}), \mathrm{Pv}(\mathrm{G}), \mathrm{Pc}(\mathrm{G})$.

From Graphs to a Point Cloud

$$
\operatorname{Pv}(G)=\langle 6,5,4,4,3,3,3\rangle
$$

From Graphs to a Point Cloud

(1,1,1,1,1,1,1)

(4,4,4,2,3,2,2)

(1,1,1,0,1,0,0)

This graph has no cliques of size higher than 4.
The clique vector in this example is $\operatorname{Pc}(G)=\langle 11,10,10,7,8,6,6\rangle$
obtained by taking the sum of the 4 vectors presented under graphs.

From Graphs to a Point Cloud

The final vector $<\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}), \mathrm{CN}(\mathrm{G})>$ lives in $R^{2|\mathrm{~V}(\mathrm{G})|+3}$.

Its length depends on the graph. In order to make all of them live in the same space we augment as many zeros as necessary to the points with small dimensions.

Output

A 2d multidimensional scaling projection for the resulting point cloud.

Output

The barcode diagram describing the birth and death of the connected components.

Output

Tree dendrogram tree representing merging components at all levels in the
h -clustering

Output

Figure 15. ctg7180000088928

Figure 17. ctg7180000067742

Figure 16. ctg7180000088096

Figure 18. ctg7180000067187

Output

Output

Figure
ctg7180000067223

Output

The outputs indicated that a single large cluster is formed, with some isolated singleton clusters.

Output

The outputs indicated that a single large cluster is formed, with some isolated singleton clusters.

This is interpreted that most genes have similar and simple interaction patterns

Output

The outputs indicated that a single large cluster is formed, with some isolated singleton clusters.

This is interpreted that most genes have similar and simple interaction patterns

The Singleton clusters correspond to genes with complex interaction patterns that are unique and rare among the other genes.

Part II

Similarity among datasets

$$
0000000
$$

Detecting similarity between data sets

Measuring distance between two persistence diagrams

data1

Distance between PD(data1) and PD(data2)

Measuring distance between two persistence diagrams

Persistence diagrams

In this example we want the distance to be larger than the previous one

Distance between PD(data1) and PD(data2)

Bottleneck distance between two persistent diagrams

- A persistence diagram can be thought of as a summary of topological features of a given data set.
- To quantify the structural difference between two datasets D1 and D2, we compute the bottleneck and Wasserstein distances between their persistence diagrams.
- Given two persistence diagrams X and Y, let η be a bijection between points in the diagram.

$$
\begin{gathered}
W_{\infty}(X, Y)=\inf _{\eta: X \rightarrow Y} \sup _{x \in X}\|x-\eta(x)\|_{\infty} \\
W_{q}(X, Y)=\left[\inf _{\eta: X \rightarrow Y} \Sigma_{x \in X}\|x-\eta(x)\|_{\infty}^{q}\right]^{1 / q}
\end{gathered}
$$

Bottleneck distance between two persistent diagrams
MDSCALE with M

Matrix M describes the pair-wise distance
between the persistence \rightarrow diagrams of each data element

MDS plot of the matrix M with labels corresponding to each class.

100日时 \rightarrow 8isesis sis 8

Input data \qquad

Detecting similarity between data sets-graph similarity detection

Detecting similarity between data sets-graph similarity detection

$L P$
$e_{1} L P$
$e_{2} L P$
$e_{3} L P$

0 \& 0.5 \& 0.5 \& 0.5

\& 0 \& 0.5 \& 0.5

\& \& 0 \& 0.5

\& \& \& 0\end{array}\right] \left\lvert\,\)| $L P$ | $n_{1} L P$ | $n_{2} L P$ | $n_{3} L P$ |
| ---: | :--- | :--- | :--- |
| | | | |
| $e_{1} L P$ | | | |
| $e_{2} L P$ | | | |
| $e_{3} L P$ | | | |\(\left[\begin{array}{llll}0 \& 0.25 \& 0.75 \& 1

\& 0 \& 0.5 \& 0.75

\& \& 0 \& 0.25

\& \& \& 0\end{array}\right]\right.\)

PH Softwares

- JavaPlex : an easy to use java library
- Perseus a C++ library
-TDA : an R library

Other libraries :

- GAP Persistence
-DIPHA
- GUDHI
- Dionysus

Gudhi Library

Gudhi Library

Definition from the website : The GUDHI library is a generic open source C++ library, with a Python interface, for Topological Data Analysis (TDA) and Higher Dimensional Geometry Understanding.

Gudhi Library : rips_distance_matrix_persistence

This exe operates only on a distance matrix input file.
An example of basic usage of this exe :
rips_distance_matrix_persistence INPUTFILE -d 1 -r 5 -o out.txt
d : is the max dimension at which the rips complex computes r : is the max distance at which we stop computing new simplicies o : the output file

Gudhi Library : rips_persistence

This exe operates only on a distance matrix input file.
An example of basic usage of this exe :
rips_persistence INPUTFILE -d 1-r 5-o out.txt
d : is the max dimension at which the rips complex computes r : is the max distance at which we stop computing new simplicies o : the output file

Gudhi Library : bottleneck_read_file_example

This exe takes as input 2 persistence diagrams
An example of basic usage of this exe : bottleneck_read_file_example INPUTFILE1 INPUTFILE2 each input file must contain in each line : birth death

