Contour Trees and Persistence
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Slice: 22

Slice: 22

Example Contour Tree simplification of radio astronomy data. Top: The critical points of the Contour Tree
are overlaid on the scalar field. Bottom: The simplified scalar field is colored with a divergent colormap, blue for
negative and red for positive. The simplification level goes from none on the left (a) to very aggressive on the right (d).
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Persistence Diagram of a scalar function

Algorithm 2: Calculating o-dimensional persistent homology

Require: A function f:DcR - R
1: function PERSISTENTHOMOLOGY( f)
2 U«g > Initialize an empty union-find structure

3: Sort the function values of f in ascending order.
4: for Function value y of f do
5: if y is a local minimum then
6: Create a new connected component in U.
7: else if y is a local maximum then
8: Use U to merge the two connected components meeting at y.
9: else
10: Use U to add y to the current connected component.
11 end if
12: end for

13: end function
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Algorithm 3: Calculating discrete o-dimensional persistent homology

Require: A discrete sample {(x1, y1), (x2, ¥2),... } ofafunction f:Dc R - R
1: function PERsISTENTHOMOLOGY(f)
2 U<+ g [> Initialize an empty union-find structure

3: Sort the value tuples in ascending order, such that y; > y, > ...
4 for Tuple (x;, y;) of f do
5: if y,.1 > yi and y;;1 > y; then > y; is a local minimum
6: U.add(i) > Create a new connected component in U
7: elseif y;_) < y; and y;4; < y; then > y; is a local maximum
8: ¢ < U.get(i—1) > Get first connected component
9: d < U.get(i+1) > Get second connected component
10: U.merge(c,d) > Merge the two connected components meeting at y;
11: else > y; is a regular point
12: ¢« U.get(i-1) > Get connected component
13: Ulc] < Ulc]ui > Add y; to the current connected component
14: end if
15: end for
16: return U

17: end function




