Contour Trees and Persistence

MUSTAFA HAJIJ

CRITICAL POINT TYPES

Reeb Graph/Contour Tree

2D Scalar function →

Application

Example Contour Tree simplification of radio astronomy data. Top: The critical points of the Contour Tree are overlaid on the scalar field. Bottom: The simplified scalar field is colored with a divergent colormap, blue for negative and red for positive. The simplification level goes from none on the left (a) to very aggressive on the right (d).

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Another example

Algorithm 2: Calculating o-dimensional persistent homology

Require: A function $f: \mathbb{D} \subseteq \mathbb{R} \to \mathbb{R}$

- 1: **function** PersistentHomology(f)
- 2: $U \leftarrow \emptyset$

- ▷ Initialize an empty union–find structure
- 3: Sort the function values of f in ascending order.
- 4: **for** Function value y of f **do**
- 5: **if** *y* is a local minimum **then**
 - Create a new connected component in U.
 - else if *y* is a local maximum then
 - Use U to merge the two connected components meeting at y.
- 9: else

6:

7:

8:

- 10: Use U to add *y* to the current connected component.
- 11: **end if**
- 12: end for
- 13: end function

Algorithm 3: Calculating discrete o-dimensional persistent homology **Require:** A discrete sample $\{(x_1, y_1), (x_2, y_2), ...\}$ of a function $f: \mathbb{D} \subseteq \mathbb{R} \to \mathbb{R}$ 1: **function** PersistentHomology(f)U←Ø ▷ Initialize an empty union–find structure 2: Sort the value tuples in ascending order, such that $y_1 \ge y_2 \ge \dots$ 3: for Tuple (x_i, y_i) of f do 4: if $y_{i-1} > y_i$ and $y_{i+1} > y_i$ then \triangleright *y_i* is a local minimum 5: \triangleright Create a new connected component in U U.add(i) 6: else if $y_{i-1} < y_i$ and $y_{i+1} < y_i$ then \triangleright *y*^{*i*} is a local maximum 7: $c \leftarrow \text{U.get}(i-1)$ ▷ Get first connected component 8: $d \leftarrow \text{U.get}(i+1)$ ▷ Get second connected component 9: U.merge(c, d) \triangleright Merge the two connected components meeting at y_i 10: else \triangleright y_i is a regular point 11: \triangleright Get connected component $c \leftarrow U.get(i-1)$ 12: \triangleright Add y_i to the current connected component $U[c] \leftarrow U[c] \cup i$ 13: end if 14: end for 15: return U 16: 17: end function