Contour Trees and Persistence

MUSTAFA HAJIJ

CONTOUR TREES

CONTOUR TREES

CONTOUR TREES

CRITICAL POINT TYPES

local min local max saddle point

CONTOUR TREES

—

CONTOUR TREES

CONTOUR TREES

CONTOUR TREES

3¢

10

CONTOUR TREES

11

CONTOUR TREES

44//’\X

12

CONTOUR TREES

A CLOSER LOOK AT THE CONTOUR TREE

13

A CLOSER LOOK AT THE CONTOUR TREE

14

A CLOSER LOOK AT THE CONTOUR TREE

15

16

A CLOSER LOOK AT THE CONTOUR TREE

17

A CLOSER LOOK AT THE CONTOUR TREE

18

A CLOSER LOOK AT THE CONTOUR TREE

19

A CLOSER LOOK AT THE CONTOUR TREE

——— .
\E—

-0.C Poa—

20

A CLOSER LOOK AT THE CONTOUR TREE
A

Scalar Value
of Event

21

A CLOSER LOOK AT THE CONTOUR TREE
A

Scalar Value
of Event

Birth of the Feature —

22

A CLOSER LOOK AT THE CONTOUR TREE
A

Scalar Value
of Event

Death of the Feature

Birth of the Feature —

23

A CLOSER LOOK AT THE CONTOUR TREE
A

Scalar Value
of Event

Persistence
of the
Feature

24

CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Death Time

Feature Birth Time

25

CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Death Time

Feature Birth Time

26

CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Death Time

Feature Birth Time

27

CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Death Time

Feature Birth Time

28

CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Death Time

Feature Birth Time

29

CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Death Time

Feature Birth Time

30

Feature Death Time

CONTROLLING SIMPLIFICATION

THE PERSISTENCE DIAGRAM

.~ PERSISTENCE!

Feature Birth Time

31

CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Death Time

Feature Birth Time

FEATURE REMOVAL

FEATURE REMOVAL

FEATURE REMOVAL

FEATURE REMOVAL

36

2D Scalar function

Reeb Graph/Contour Tree

Y
) A

37

Slice: 22

Slice: 22

Example Contour Tree simplification of radio astronomy data. Top: The critical points of the Contour Tree
are overlaid on the scalar field. Bottom: The simplified scalar field is colored with a divergent colormap, blue for
negative and red for positive. The simplification level goes from none on the left (a) to very aggressive on the right (d).

Persistence Diagram of a scalar function
* Track the evolution of the topology of sub-level sets as the threshold increases.

* Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function
* Track the evolution of the topology of sub-level sets as the threshold increases.

* Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function
* Track the evolution of the topology of sub-level sets as the threshold increases.

* Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function
* Track the evolution of the topology of sub-level sets as the threshold increases.

* Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function
* Track the evolution of the topology of sub-level sets as the threshold increases.

* Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function
* Track the evolution of the topology of sub-level sets as the threshold increases.

* Pair thresholds that create components with those that destroy them.

/L

Persistence Diagram of a scalar function
* Track the evolution of the topology of sub-level sets as the threshold increases.

* Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function
* Track the evolution of the topology of sub-level sets as the threshold increases.

* Pair thresholds that create components with those that destroy them.

Persistence Diagram of a scalar function
* Track the evolution of the topology of sub-level sets as the threshold increases.

* Pair thresholds that create components with those that destroy them.

Another example

Persistence Diagram of a scalar function

Algorithm 2: Calculating o-dimensional persistent homology

Require: A function f:DcR - R
1: function PERSISTENTHOMOLOGY(f)
2 U«g > Initialize an empty union-find structure

3: Sort the function values of f in ascending order.
4: for Function value y of f do
5: if y is a local minimum then
6: Create a new connected component in U.
7: else if y is a local maximum then
8: Use U to merge the two connected components meeting at y.
9: else
10: Use U to add y to the current connected component.
11 end if
12: end for

13: end function

Persistence Diagram of a scalar function

Algorithm 3: Calculating discrete o-dimensional persistent homology

Require: A discrete sample {(x1, y1), (x2, ¥2),... } ofafunction f:Dc R - R
1: function PERsISTENTHOMOLOGY(f)
2 U<+ g [> Initialize an empty union-find structure

3: Sort the value tuples in ascending order, such that y; > y, > ...
4 for Tuple (x;, y;) of f do
5: if y,.1 > yi and y;;1 > y; then > y; is a local minimum
6: U.add(i) > Create a new connected component in U
7: elseif y;_) < y; and y;4; < y; then > y; is a local maximum
8: ¢ < U.get(i—1) > Get first connected component
9: d < U.get(i+1) > Get second connected component
10: U.merge(c,d) > Merge the two connected components meeting at y;
11: else > y; is a regular point
12: ¢« U.get(i-1) > Get connected component
13: Ulc] < Ulc]ui > Add y; to the current connected component
14: end if
15: end for
16: return U

17: end function

