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Clustering Algorithms

• A cluster is a collection of data objects. 

• A clustering algorithm tries to put similar objects to one another within the 
same cluster and dissimilar objects in other clusters. 

• Clustering is an unsupervised classification: The data is unlabeled.

• A clustering algorithm tries to understand what kind of structure in the data : 
what sub-population does the data have ?

Recall: 



K-Means Algorithm: Example

Say that we have the 
following data points 
in the plan.



K-Means Algorithm: Example

K-means is a 
clustering algorithm 
that is best explained 
via an example   



Choose randomly 3 
centroids : 𝑐1, 𝑐2, 𝑐3
(the points appear 
in blue, red and 
yellow)

K-Means Algorithm: Example



assign each point x 
in the set to the 
closest centroid

K-Means Algorithm: Example



Update the 
centroids 𝑐1, 𝑐2, 𝑐3
as follows : 

𝑐𝑖 =
1

𝑆𝑖
 

𝑥∈𝑆𝑖

𝑥

K-Means Algorithm: Example



Update the 
centroids 𝑐1, 𝑐2, 𝑐3
as follows : 

𝑐𝑖 =
1

𝑆𝑖
 

𝑥∈𝑆𝑖

𝑥

In other words, the 
new center is the 
average of the 
cluster members

assign each point x 
in the set to the 
closest centroid

K-Means Algorithm: Example



Repeat until 
convergence

K-Means Algorithm: Example



Repeat until 
convergence

K-Means Algorithm: Example



Repeat until 
convergence

K-Means Algorithm: Example



Repeat until 
convergence

K-Means Algorithm: Example



Notations

The 𝑛𝑡ℎ Euclidian space will be denoted by 𝑅𝑛. A point in 𝑅𝑛 will be denoted by 𝑥. In this lecture 

the term data, or the training set, 𝑋 will mean a finite set of points in 𝑅𝑛.

In other words, 𝑋 = {𝑥 1 , … , 𝑥(𝑚)} where 𝑥(𝑖) 𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑅𝑛

The Euclidian distance between two points 𝑥 and 𝑦 in 𝑅𝑛 will be denoted by 𝑑(𝑥, 𝑦).  



Notations

The 𝑛𝑡ℎ Euclidian space will be denoted by 𝑅𝑛. A point in 𝑅𝑛 will be denoted by 𝑥. In this lecture 

the term data, or the training set, 𝑋 will mean a finite set of points in 𝑅𝑛.

In other words, 𝑋 = {𝑥 1 , … , 𝑥(𝑚)} where 𝑥(𝑖) 𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑅𝑛

The Euclidian distance between two points 𝑥 and 𝑦 in 𝑅𝑛 will be denoted by 𝑑(𝑥, 𝑦).  

Q: what is the formula for the Euclidian distance between two points in 𝑅𝑛?



K-Means Algorithm

The K-means algorithm takes two inputs: 

1. A parameter 𝐾, which is the number of clusters one wants to find in the data.

2. The training set 𝑋 of the points. 

The algorithm returns the data 𝑋 partitioned into K-clusters.

𝐻𝑒𝑟𝑒 𝑋 = {𝑥 1 , … , 𝑥(𝑚)} where 𝑥(𝑖) 𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑅𝑛.



1-Choose randomly k centroids : 𝑐1, 𝑐2, … . , 𝑐𝐾 in 𝑅
𝑛

a : We assign each point x in the set to the closest centroid.  

b : Update the centroids 𝑐1, 𝑐2, … . , 𝑐𝐾 as follows : 

𝑐𝑖 =
1

𝑆𝑖
 

𝑥∈𝑆𝑖

𝑥

Here 𝑆𝑖 is the cluster associated with the centroid 𝑐𝑖

2-Repeat until convergence

K-Means Algorithm

Cluster assignment step

Centroid move step

• none of the cluster assignments change
• The centroids do not change  

Convergence:



1-Choose randomly k centroids : 𝑐1, 𝑐2, … . , 𝑐𝐾 in 𝑅
𝑛

a : We assign each point x in the set to the closest centroid.  

b : Update the centroids 𝑐1, 𝑐2, … . , 𝑐𝐾 as follows : 

𝑐𝑖 =
1

𝑆𝑖
 

𝑥∈𝑆𝑖

𝑥

Here 𝑆𝑖 is the cluster associated with the centroid 𝑐𝑖

2-Repeat until convergence

K-Means Algorithm

Cluster assignment step

Centroid move step

• none of the cluster assignments change
• The centroids do not change  

Convergence:

This is where mean
comes from



Lets consider 
another example

K-Means Algorithm: Example
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K-Means Algorithm: Example



K-Means Algorithm: Example



K-Means Algorithm: Complexity

1-Choose randomly k centroids : 𝑐1, 𝑐2, … . , 𝑐𝐾 in 𝑅
𝑛

a : We assign each point x in the set to the closest centroid.  

b : Update the centroids 𝑐1, 𝑐2, … . , 𝑐𝐾 as follows : 

𝑐𝑖 =
1

𝑆𝑖
 

𝑥∈𝑆𝑖

𝑥

Here 𝑆𝑖 is the cluster associated with the centroid 𝑐𝑖

2-Repeat until convergence



K-Means Algorithm: Complexity

Complexity is O( 𝑚 ∗ 𝐾 ∗ 𝐼 ∗ 𝑛 ) 
𝑚 = number of points in the data set
𝐾 = number of clusters
𝐼 = number of iterations 
𝑛 = number of attributes=number of features= the dimension of the space 𝑅𝑛

1-Choose randomly k centroids : 𝑐1, 𝑐2, … . , 𝑐𝐾 in 𝑅
𝑛

a : We assign each point x in the set to the closest centroid.  

b : Update the centroids 𝑐1, 𝑐2, … . , 𝑐𝐾 as follows : 

𝑐𝑖 =
1

𝑆𝑖
 

𝑥∈𝑆𝑖

𝑥

Here 𝑆𝑖 is the cluster associated with the centroid 𝑐𝑖

2-Repeat until convergence



K-Means Algorithm: convergence

• What exactly is the optimization function of this algorithm ?

 

𝑖

 

𝑥∈𝑆𝑖

𝐷 𝑥, 𝑐𝑖

2

This is the total squared distance from the centroid to the points of the cluster associated to the centroid 

Cost function of K-means 



K-Means Algorithm: convergence

 

𝑖

 

𝑥∈𝑆𝑖

𝐷 𝑥, 𝑐𝑖

2

This is the total squared distance from the center to the points of the cluster associated to the center

Cost function of K-means 

• Since we start with random centers every time we run this algorithm, is it guaranteed to 
give the same clustering configuration ? Is the algorithm guaranteed to converge ?

The algorithm converges (in the sense that each iteration minimizes the cost function 
above) but it converges to a local min. Which means that (1) the solution might not be the 
optimal solution and (2) one might get different results for different initial starts.



K-Means Algorithm: convergence

 

𝑖

 

𝑥∈𝑆𝑖

𝐷 𝑥, 𝑐𝑖

2

This is the total squared distance from the center to the points of the cluster associated to the center

Cost function of K-means 

• Which part of the algorithm guarantees the algorithm tried to minimize the above 
function ?

1-Choose randomly k centroids : 𝑐1, 𝑐2, … . , 𝑐𝐾 in 𝑅
𝑛

a : We assign each point x in the set to the closest centroid.  

b : Update the centroids 𝑐1, 𝑐2, … . , 𝑐𝐾 as follows : 

𝑐𝑖 =
1

𝑆𝑖
 

𝑥∈𝑆𝑖

𝑥

Here 𝑆𝑖 is the cluster associated with the centroid 𝑐𝑖

2-Repeat until convergence



K-Means Algorithm: convergence

 

𝑖

 

𝑥∈𝑆𝑖

𝐷 𝑥, 𝑐𝑖

2

This is the total squared distance from the center to the points of the cluster associated to the center

Cost function of K-means 

• Which part of the algorithm guarantees the algorithm tried to minimize the above 
function ?

1-Choose randomly k centroids : 𝑐1, 𝑐2, … . , 𝑐𝐾 in 𝑅
𝑛

a : We assign each point x in the set to the closest centroid.  

b : Update the centroids 𝑐1, 𝑐2, … . , 𝑐𝐾 as follows : 

𝑐𝑖 =
1

𝑆𝑖
 

𝑥∈𝑆𝑖

𝑥

Here 𝑆𝑖 is the cluster associated with the centroid 𝑐𝑖

2-Repeat until convergence

Minimize the cost 
function with respect to 
the clusters  

Minimize the cost 
function with respect to 
the centroids 



K-Means Algorithm: problems

K-means has the following problems :

• Outliers

• Clusters with different densities

• Non-convex shapes

• Clusters with different sizes

• May converge to local optimum 

sklearn example here 

http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py


K-Means Algorithm: problems

K-means has the following problems :

• Outliers

• Clusters with different densities

• Non-convex shapes

• Clusters with different sizes

• May converge to local optimum 

sklearn example here 

Look up what the term 

convex means exactly!

http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py


K-Means Algorithm: remarks

K-means is clearly applicable to 

data sets where the clusters 

are very well-separated 



K-Means Algorithm: remarks

K-Means is often applied to 

data that have no clear 

clustering structure

K-means is clearly applicable to 

data sets where the clusters 

are very well-separated 



K-Means Algorithm: remarks

K-means may get stuck in a local optimum 



K-Means Algorithm: remarks

K-means may get stuck in a local optimum 

One solution for this is to run K-means several times and pick the attempt that 

minimizes the cost function



K-Means Algorithm: remarks

Nearby points may not end in the same cluster
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It is possible that K-means gets stuck in this local optimum. 
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K-Means Algorithm: remarks

Nearby points may not end in the same cluster

It is possible that K-means gets stuck in this local optimum. 

How would you solve this problem ?

Try different initialization and choose the one that produces the best result (wrt the 

cost function).



K-Means Algorithm: remarks

Using Euclidian Distance K-means will not give the natural clusters for this set.



K-Means Algorithm: remarks

Using Euclidian Distance K-means will not give the natural clusters for this set.

One can try to change the features :  

𝑥, 𝑦 → 𝑥2 + 𝑦2, tan−1
𝑦

𝑥
(𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡𝑜 𝑝𝑜𝑙𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)

or change the distance function used in the K-means algorithm.



Application: Color Quantization

62941 colors 128 colors 64 colors

32 colors 16 colors

K-means can be used to reduce the number of colors needed to in image. In this example we can reduce the 

number of colors from 62941 unique colors to 128, while maintain the overall quality.



Application: Color Quantization

Main idea: 

Recall that every pixel in an 8-bit color image is represented by three numbers (𝑟, 𝑔, 𝑏) where 𝑟, 𝑔 and 𝑏 are 

integers between 0 and 28 = 255 (the range that a single 8-bit can offer).

The idea is to consider only the pixel colors of the image and think of them as being points in RGB cube in 

𝑅3.
The K-means clustering is then performed on this data set consisting of the all points 𝑟, 𝑔, 𝑏 in 

𝑅3corresponding to the pixels in the image.

Each cluster center is then chosen to be the representative color 

of that cluster and mapped back to the image.

sklearn code example here

http://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html#sphx-glr-auto-examples-cluster-plot-color-quantization-py


K-means variations

Almost every aspect of K-means has been altered and changed to perform other clustering tasks.

• Distance function: Any function that satisfy distance axioms can be used instead of the Euclidian 

distance.

• Cost function

• Initialization heuristics

• Efficiency

• Centroid definition: K-Medians, K-mediods

See Wikipedia page here

https://en.wikipedia.org/wiki/K-medians_clustering
https://en.wikipedia.org/wiki/K-medoids
https://en.wikipedia.org/wiki/K-means_clustering

