

Graphs Algorithms

Mustafa Hajij

Graphs

A graph is an ordered pair (V,E) where,

• V is the *vertex set (also node set)* whose elements are the vertices, or *nodes* of the graph.

• E is the *edge set* whose elements are the edges, or connections between vertices, of the graph. If the graph is undirected, individual edges are unordered pairs.

• If the graph is directed, edges are ordered pairs

directed

undirected

Graphs representation: list of nodes and edges

Nodes: [0,1,2,3,4] Edges: [[0,1], [1,3],[1,4] [3,4], [3,2]]

Note that if the graph is connected, then the list of edges is enough to determine the graph completely.

Graphs representation: list of nodes and edges

Nodes: [0,1,2,3,4] Edges: [[0,1], [1,3],[1,4] [3,4], [3,2]]

The order of the vertices is important only if the graph is directed.

Graphs representation: adjacency matrix

	1	2	3	4	5	6
1	0	1	1	0	0	0
2	1	0	0	1	0	0
3	1	0	0	1	0	0
4	0	1	1	0	1	0
5	0	0	0	1	0	1
6	0	0	0	0	1	0

Graphs representation: adjacency matrix

Weighted Graphs

A weighted graph is a graph in which every edge has a weight (non-negative real number)

Weighted Graphs

A weighted graph is a graph in which every edge has a weight (non-negative real number)

Formally speaking :

A weight function $w: E \to R^+$. In other words, the function w associates to every edge e a positive number (weight) w(e)

A weighted graph is a graph G=(V,E) with a weight function $w: E \rightarrow R^+$.

Shortest distance

What is the shortest distance between A and B?

Shortest distance

What is the shortest distance between A and B?

Dijkstra algorithm

The basic Dijkstra algorithm operates on connected, undirected, weighted graph.

1:	Dijkstra(Graph, source):					
2:	for each vertex v in Graph:					
3:	distance[v] := infinity	distance[v] := infinity // the initial distance from source to any other vertex v is infinity				
4:	previous[v] := undefined					
5:	distance[source] := 0	// Distance from the source to itself is zero				
6:	Q := the set of all nodes in the Graph	<pre>// all nodes are going in this container</pre>				
7:	while Q is not empty:	// main loop				
8:	u := the node in Q with smal	u := the node in Q with smallest distance from the source (what kind of queue you use here?)				
9:	remove u from Q	//the source will be removed first				
10:	for each neighbor v of u:	// v is still in the container Q				
11:	alt := distance[u] +	alt := distance[u] + length(u, v)				
12:	if alt < distance[v]	<pre>//A shorter path from v to the source has been found</pre>				
13:	distance	distance[v] := alt				
14:	previous	previous[v] := u				
15:	return distance[], previous[]					

Input : weighted graph with a source vertex

Algorithm starts by initializing the distance to every vertex other than the source to infinity. We also create a queue Q and put in it all vertices of *G*.

When we enter the while loop we dequeue the element in Q with shortest distance to source. In this case it is a.

for each neighbor v of u:

In this case we update the distance to b to 1.

Now we visit all neighbors of *a* and update the distance to them:

for each neighbor v of u:

Here we update the distance to c to be 1 as well

Here we update the distance to *c* to be 1 as well

At this stage all neighbors of *a* have been visited so we check the queue again: if is not empty we start the process again.

We select *b* (the closest element to a so far)

Remove b from the queue and start visiting all its neighbors and update the distance.

In this case the distance does not update—why?

Here we update the distance from *a* to *e* to be 4

And so on

3.5

Example

We can view a mesh as a graph and apply Dijkstra algorithm on it.

Example

We can view a mesh as a graph and apply Dijkstra algorithm on it.

Blue indicates the regions closest to the source

Spanning Tree

Let G = (V, E) be a connected weighted graph. A spanning tree for G is a subgraph of G which includes all of the vertices of G and is a tree.

A graph might have more than one spanning tree

Spanning trees for G

Minimal Spanning Tree

Let G = (V, E, w) be a connected weighted graph. A minimal spanning tree for G is a spanning tree whose sum of edge weights is as small as possible.

A graph might have more than one minimal spanning tree. However, if all edges in the graph have unique weights then the minimal spanning tree is unique.

Kruskal's Algorithm

Let G = (V, E, w) be a connected weighted graph. The Kruskal's algorithm is a greedy algorithm.

Informally, the algorithm can be given by the following three steps :

- 1. Set V_T to be V, Set $E_T = \{\}$. Let S = E
- 2. While *S* is not empty and *T* is not a spanning tree
 - 1. Select an edge e from *S* with the minimum weight and delete e from *S*.
 - 2. If *e* connects two separate trees of *T* then add *e* to E_T

Kruskal's Algorithm

Let G = (V, E, w) be a connected weighted graph. The Kruskal's algorithm is a greedy algorithm

This can be implemented using <u>union-find</u> data-structure

1- A= {} 2-foreach $v \in V$: 3- MAKE-SET(v) 4-foreach (u, v) in E ordered by weight(u, v), increasing: 5- if FIND-SET(u) \neq FIND-SET(v): 6- $A = A \cup \{(u, v)\}$ 7- UNION(u, v) 8-return A

Prim's Algorithm

Let G = (V, E, w) be a connected weighted graph. The Prim's algorithm is a greedy algorithm

Informally, the algorithm can be given by the following three steps :

- 1. Select an arbitrary vertex v from V. Set $V_T = \{v\}$ and $E_T = \{ \}$
- 2. Grow the tree by one edge : choose an edge e(u,v) from the set E with the lowest cost such that u in V_T and v is in $V \setminus V_T$ then add v to V_T and add e to E_T
- 3. If $V_T = V$ break, otherwise go to step 2.