Graphs Algorithms

Mustafa Hajij

Graphs

A graph is an ordered pair (V,E) where,

* V is the vertex set (also node set) whose elements are the vertices, or nodes of the
graph.

* E is the edge set whose elements are the edges, or connections between vertices,
of the graph. If the graph is undirected, individual edges are unordered pairs.

« If the graph is directed, edges are ordered pairs

undirected directed

Graphs representation: list of nodes and edges

2

Nodes: [0,1,2,3,4]
Edges: [10.1], [1,3],[1,4] [3,4], [3,2]]

Note that if the graph is connected, then the list of edges
IS enough to determine the graph completely.

Graphs representation: list of nodes and edges

2

Nodes: [0,1,2,3,4]
Edges: [10.1], [1,3],[1,4] [3,4], [3,2]]

The order of the vertices is important only if the graph is directed.

Graphs representation: adjacency matrix

e
S
ol=]=[=]=]-®
s[=[=[=]=]-®
~[eT-T=]=]-®
ol-ToleToTo@

Graphs representation: adjacency matrix

o|lo |~ |o
@DDD1U._.
®ol|l~|~|o|~|o
®1DD._._UD
@ ~|o|le|l~|o]|e
Tl Tlolole
CNONONONONO

Weighted Graphs

A weighted graph is a graph in which every edge has a weight (non-negative real number)

Weighted Graphs

A weighted graph is a graph in which every edge has a weight (non-negative real number)

Formally speaking :

A weight function w: E — R™. In other words, the function w associates to every edge e a positive number (weight) w(e)

A weighted graph is a graph G=(V,E) with a weight function w: E - R*.

Shortest distance

What is the shortest distance between A and B?

Shortest distance

What is the shortest distance between A and B?

Dijkstra algorithm

The basic Dijkstra algorithm operates on connected, undirected, weighted graph.

1: Dijkstra(Graph, source):

2: for each vertex v in Graph:

3: distance[v] := infinity // the initial distance from source to any other vertex v is infinity
4: previous[v] := undefined

5: distance[source] :=0 // Distance from the source to itself is zero

6: Q :=the set of all nodes in the Graph //all nodes are going in this container

7: while Q is not empty: // main loop

8: u := the node in Q with smallest distance from the source (what kind of queue you use here?)
9: remove u from Q //the source will be removed first

10: for each neighbor v of u: // v is still in the container Q

11: alt := distance[u] + length(u, v)

12: if alt < distance[v] //A shorter path from v to the source has been found
13: distance[v] := alt

14: previous[v] :=u

15: return distance[], previous|]

Dijkstra algorithm

source

Input : weighted graph
with a source vertex

: Example

Dijkstra algorithm : Example

Q={a,b,c,d,e}

inf

1
sourc'nf
1 inf

nf

source

Algorithm starts by
initializing the distance to
every vertex other than the
source to infinity. We also
create a queue Q and putin
it all vertices of G.

Dijkstra algorithm : Example

Q={a,b,c,d,e}

0 1 inf
source v, inf
1
2 0.5
1 inf)
inf

source

When we enter the while loop
we dequeue the element in Q
with shortest distance to
source. In this case it is a.

Dijkstra algorithm : Example

Q={a,b,c,d,e} Q={b,c,d,e}

0 1 inf 0 1 inf
source v, inf source v, inf
1 1
2 0.5 2 0.5
1 inf . inf .
inf inf

source

When we enter the while loop
we dequeue the element in Q
with shortest distance to
source. In this case it is a.

Dijkstra algorithm : Example

source

Now we visit all neighbors of a
and update the distance to
them:

for each neighbor v of u:

Q={a,b,c,d,e} Q={b,c,d,e}

Q={b,c,d.e}

0 1 inf 0 1 inf
source v, inf 1 source v, inf
N3 0.5 "N n.s
inf) inf
inf inf

o , |
5 .
source %‘ inf
1 2 ﬁ.ﬁ
inf

inf

alt := distance[u] + length(u, v)
if alt < distance[v]
distance[v] := alt

Dijkstra algorithm : Example

Q={a,b,c,de} Q={b,c,de} Q={b,c,d,e}

0 1 inf 0 1 inf 0 1 1
5 5 5 .
source wv ‘) inf source \ nf | source v ‘ inf
1 u_s 5 1 0_5
1 inf) inf . inf]
inf inf inf
source
0.5 In this case we update the

distance to b to 1.

Now we visit all neighbors of a
and update the distance to
them:
for each neighbor v of u:
alt := distance[u] + length(u, v)
if alt < distance[v]
distance[v] := alt

Dijkstra algorithm : Example

Q={a,b,c,de} Q={bcde} Q={bcde} Q={bc,de}

0 1 inf 0 1 inf 0 1 1 0 4 1
source v, inf 1 source v, inf | source v, inf | source m inf
N3 u.s "N n.s "N u.s N3 n.s
inf) inf inf 1)
inf inf inf

Source] inf

Here we update the distance to
c to be 1 as well

Dijkstra algorithm : Example

Q={a,b,c,de} Q={bcde} Q={bcde} Q={bc,de}

0 1 inf 0 1 inf 0 1 1 0 4 1
source v, inf | source v, inf | source v» inf | source w inf
1 N3 u.s "N n.s "N u.s N3 n.s
inf) inf inf 1)
inf inf inf inf

source

Here we update the distance to
¢ to be 1 as well

At this stage all neighbors of a
have been visited so we check
the queue again: if is not empty
we start the process again.

Dijkstra algorithm : Example

Q={a,b,c,d,e} Q={b,c,d,e}

Q={b,c,d,e}

Q={b,c,d.e}

0 1 inf 0 1 inf 0 1 1 0 4 1
source v, inf 1 source v, inf | source v, inf | source m inf
N3 u.s "N n.s "N u.s N3 n.s
inf) inf inf 1)
inf inf inf inf

source 0.5
Q={b,c,d,e}

5 .
ssssss NG
We select b (the closest 1 u.5

element to a so far) inf

Dijkstra algorithm : Example

Q={a,b,c,de} Q={bcde} Q={bcde} Q={bc,de}

) inf inf 0
source v,‘ inf source v, inf source v» inf source v,‘ inf
1 05 D 5 ' us
inf inf inf
inf inf inf

source

Q={b,c,d,e} Q={c,d.e}

source f ource
Remove b from the queue and ﬂ;n s VA\

start visiting all its neighbors inf inf
and update the distance.

inf
5

D

In this case the distance does
not update—why ?

Dijkstra algorithm : Example

o 0.5

The distance here also does not
update

Q={a,b,c,d,e} Q={b,c,d,e}

Q={b,c,d,e}

Q={b,c,d,e}

0 inf

inf

inf

0 4
source v, inf
1 2 0.5

5
inf]
inf

0 4 |

VA

inf

Q={h,c,d,e}

Q={c,d,e}

Q={c,d,e}

0
e

inf

sourc

inf

Dijkstra algorithm : Example

Q={a,b,c,de} Q={bcde} Q={bcde} Q={bc,de}

0 1 inf 0 1 inf 0 1 1 0 4 1
source v, inf | source v, inf | source v, inf | source m inf
N3 u.s "N n.s "N u.s N3 n.s
inf) inf inf 1)
inf inf inf

source 0.5 -
Q={b,c,d,e}

Q={c,de} Q={c,de} Q={c,d,e}

1 1 1 1
0 1 0 1 0 1 0 1
Here we update the distance | ¢ v inf v inf v inf ‘ inf
source ~_ 02/ 3\ >~ | source source 0.2
fromatoetobed 1 1 fos 1 Jos ‘ Jos " u.s
1 1
inf ! inf inf 4

Dijkstra algorithm : Example

o 0.5

Update the distance from a to d

Q={a,b,c,d,e} Q={b,c,d,e}

Q={b,c,d,e}

Q={b,c,d,e}

0 inf

inf

inf

0 4
source v, inf
1 2 0.5

5
inf]
inf

0 4 |

VA

inf

Q={h,c,d,e}

Q={c,d,e}

Q={c,d,e}

Q={c,d,e}

0
e

inf

sourc

inf

0 4 1 5
source inf
1 5 u.s
1
4

Dijkstra algorithm : Example

o 0.5

And so on

Q={a,b,c,d,e} Q={b,c,d,e}

Q={b,c,d,e}

Q={b,c,d,e}

0 inf

inf

inf

0 4
source v, inf
1 2 0.5

5
inf]
inf

0 4 |

VA

inf

Q={h,c,d,e}

Q={c,d,e}

Q={c,d,e}

Q={c,d,e}

0
e

inf

sourc

inf

0 4 1 5
source inf
1 5 u.s
1
4

Q=)

0o 4 1 5
source 3
1
3.5

Example

Edges

vertices

We can view a mesh as a graph and apply
Dijkstra algorithm on it.

Example

Edges

vertices

We can view a mesh as a graph and apply Blue indicates the regions closest to the source
Dijkstra algorithm on it.

Spanning Tree

Let G = (V, E) be a connected weighted graph. A spanning tree for G is a subgraph of G which includes all of
the vertices of G and is a tree.

A graph might have more than one spanning tree

NN
N TR N

Spanning trees for G

Minimal Spanning Tree

Let G = (V, E,w) be a connected weighted graph. A minimal spanning tree for G is a spanning tree whose
sum of edge weights is as small as possible.

A graph might have more than one minimal spanning tree. However, if all edges in the graph have unique
weights then the minimal spanning tree is unique.

Minimal spanning trees for G

Kruskal’s Algorithm

Let ¢ = (V, E,w) be a connected weighted graph. The Kruskal’s algorithm is a greedy algorithm.

Informally, the algorithm can be given by the following three steps :

1. SetVytobeV,Set Er ={}. LetS =E

2. While S is not empty and T is not a spanning tree
1. Select an edge e from S with the minimum weight and delete e from S.
2. If e connects two separate trees of T then add e to E

Kruskal’s Algorithm Example

Kruskal’s Algorithm Example

Kruskal’s Algorithm Example

Kruskal’s Algorithm Example

Kruskal’s Algorithm Example

Kruskal’s Algorithm

Let G = (V, E,w) be a connected weighted graph. The Kruskal’s algorithm is a greedy algorithm

This can be implemented using union-find data-structure

1- A= {}

2-foreachv € V:

3- MAKE-SET(v)

4-foreach (u, v) in E ordered by weight(u, v), increasing:
5- if FIND-SET(u) # FIND-SET(v):

6- A=AV {(uv)}

7- UNION(u, v)

8-return A

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Prim’s Algorithm

Let G = (V, E,w) be a connected weighted graph. The Prim’s algorithm is a greedy algorithm

Informally, the algorithm can be given by the following three steps :

1. Select an arbitrary vertex v from V. Set V; = {v}and E; ={ }

2. Grow the tree by one edge : choose an edge e(u,v) from the set E with the lowest cost such that uin V;
and visin V\V; thenadd vto V; and add e to E;

If V- = V break, otherwise go to step 2.

