## Graphs Algorithms

Mustafa Hajij



## Graphs

A graph is an ordered pair (V,E) where,

- V is the vertex set (also node set ) whose elements are the vertices, or nodes of the graph.
- E is the edge setwhose elements are the edges, or connections between vertices, of the graph. If the graph is undirected, individual edges are unordered pairs.
- If the graph is directed, edges are ordered pairs

undirected

directed


## Graphs representation: list of nodes and edges



Nodes: [0,1,2,3,4]
Edges: [ [0,1], [1,3],[1,4] [3,4], [3,2]]

Note that if the graph is connected, then the list of edges is enough to determine the graph completely.

## Graphs representation: list of nodes and edges



Nodes: [0,1,2,3,4]
Edges: [ [0,1], [1,3],[1,4] [3,4], [3,2]]

The order of the vertices is important only if the graph is directed.

## Graphs representation: adjacency matrix



| (1) (2) (3) (4) (5) (6) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (1) 0 | 1 | 1 |  | 0 | 0 |
| (2) 1 | 0 | 0 | 1 | 0 | 0 |
| (3) 1 | 0 | 0 | 1 | 0 | 0 |
| (4) 0 | 1 | 1 | 0 | 1 | 0 |
| (5) 0 | 0 | 0 | 1 | 0 |  |
| (6) 0 | 0 | 0 | 0 | 1 | 0 |

## Graphs representation: adjacency matrix



| (1) (2) (3) (4) (5) (6) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (1) 0 | 1 | 1 | 0 | 0 |  |
| (2) -1 | 0 | 0 | 1 | 0 |  |
| (3) -1 | 0 | 0 | 1 | 0 | 0 |
| (4) 0 | -1 | -1 | 0 | 1 |  |
| (5) 0 | 0 | 0 | -1 | 0 |  |
| (6) 0 | 0 | 0 | 0 | $-1$ |  |

## Weighted Graphs

A weighted graph is a graph in which every edge has a weight (non-negative real number)


## Weighted Graphs

A weighted graph is a graph in which every edge has a weight (non-negative real number)


Formally speaking :
A weight function $w: E \rightarrow R^{+}$. In other words, the function $w$ associates to every edge a positive number (weight) $w(e)$
A weighted graph is a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with a weight function $w: E \rightarrow R^{+}$.

## Shortest distance

What is the shortest distance between $A$ and $B$ ?


## Shortest distance

What is the shortest distance between $A$ and $B$ ?


## Dijkstra algorithm

The basic Dijkstra algorithm operates on connected, undirected, weighted graph.

Dijkstra(Graph, source):
for each vertex $v$ in Graph:
distance[v] := infinity // the initial distance from source to any other vertex v is infinity
previous[v]:= undefined
distance[source] := $0 \quad / /$ Distance from the source to itself is zero
$\mathrm{Q}:=$ the set of all nodes in the Graph // all nodes are going in this container
while $\mathbf{Q}$ is not empty: // main loop
$\mathrm{u}:=$ the node in Q with smallest distance from the source (what kind of queue you use here?)
remove $u$ from $Q \quad / /$ the source will be removed first
for each neighbor $v$ of $u$ : //v is still in the container $Q$
alt := distance[u] + length ( $u, v$ )
if alt < distance[v] //A shorter path from $v$ to the source has been found
distance[v] := alt
previous[v]:=u
return distance[], previous[ ]

## Dijkstra algorithm : Example



Input : weighted graph with a source vertex

## Dijkstra algorithm : Example

## $\mathrm{Q}=\{a, \mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$



Algorithm starts by initializing the distance to every vertex other than the source to infinity. We also create a queue $Q$ and put in it all vertices of $G$.

## Dijkstra algorithm : Example

## $Q=\{a, b, c, d, e\}$



When we enter the while loop we dequeue the element in Q with shortest distance to source. In this case it is a.

## Dijkstra algorithm : Example


$Q=\{a, b, c, d, e\} \quad Q=\{b, c, d, e\}$


When we enter the while loop we dequeue the element in Q with shortest distance to source. In this case it is a.

## Dijkstra algorithm : Example



Now we visit all neighbors of $a$ and update the distance to them:
for each neighbor $v$ of $u$ :

```
    alt := distance[u] + length(u,v)
    if alt < distance[v]
    distance[v] := alt
```


## Dijkstra algorithm : Example



In this case we update the distance to b to 1 .

Now we visit all neighbors of $a$ and update the distance to them:
for each neighbor $v$ of $u$ :

```
    alt := distance[u] + length(u,v)
    if alt < distance[v]
    distance[v] := alt
```


## Dijkstra algorithm : Example



Here we update the distance to c to be 1 as well

## Dijkstra algorithm : Example



Here we update the distance to $c$ to be 1 as well

At this stage all neighbors of $a$ have been visited so we check the queue again: if is not empty we start the process again.

## Dijkstra algorithm : Example



We select $b$ (the closest element to a so far)

## $\mathrm{Q}=\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$




## Dijkstra algorithm : Example



Remove $b$ from the queue and start visiting all its neighbors and update the distance.

In this case the distance does not update-why ?

## Dijkstra algorithm : Example



The distance here also does not

$$
Q=\{b, c, d, e\} \quad Q=\{c, d, e\} \quad Q=\{c, d, e\}
$$



## Dijkstra algorithm : Example



Here we update the distance from $a$ to $e$ to be 4


## Dijkstra algorithm : Example


$\mathrm{Q}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}\}$


## Dijkstra algorithm : Example



And so on

| $Q=\{c, 0, Q\}$ |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |



## Example



We can view a mesh as a graph and apply
Dijkstra algorithm on it.

## Example



We can view a mesh as a graph and apply Dijkstra algorithm on it.


Blue indicates the regions closest to the source

## Spanning Tree

Let $G=(V, E)$ be a connected weighted graph. A spanning tree for $G$ is a subgraph of $G$ which includes all of the vertices of $G$ and is a tree.

A graph might have more than one spanning tree


Spanning trees for $G$

## Minimal Spanning Tree

Let $G=(V, E, w)$ be a connected weighted graph. A minimal spanning tree for $G$ is a spanning tree whose sum of edge weights is as small as possible.

A graph might have more than one minimal spanning tree. However, if all edges in the graph have unique weights then the minimal spanning tree is unique.


Minimal spanning trees for $G$

## Kruskal's Algorithm

Let $G=(V, E, w)$ be a connected weighted graph. The Kruskal's algorithm is a greedy algorithm.

Informally, the algorithm can be given by the following three steps :

1. Set $V_{T}$ to be $V$, Set $E_{T}=\{ \}$. Let $S=E$
2. While $S$ is not empty and $T$ is not a spanning tree
3. Select an edge e from $S$ with the minimum weight and delete e from $S$.
4. If $e$ connects two separate trees of $T$ then add $e$ to $E_{T}$

Kruskal's Algorithm Example


## Kruskal's Algorithm Example



## Kruskal's Algorithm Example



## Kruskal's Algorithm Example



## Kruskal's Algorithm Example



## Kruskal's Algorithm

Let $G=(V, E, w)$ be a connected weighted graph. The Kruskal's algorithm is a greedy algorithm

This can be implemented using union-find data-structure

```
1-A= {}
2-foreach v \in V:
3- MAKE-SET(v)
4-foreach (u,v) in E ordered by weight(u,v), increasing:
5- if FIND-SET(u) = FIND-SET(v):
6- }\quadA=A\cup{(u,v)
7- UNION(u,v)
8-return A
```


## Prim's Algorithm

Let $G=(V, E, w)$ be a connected weighted graph. The Prim's algorithm is a greedy algorithm

Informally, the algorithm can be given by the following three steps :

1. Select an arbitrary vertex $v$ from V . Set $V_{T}=\{v\}$ and $E_{T}=\{\quad\}$
2. Grow the tree by one edge : choose an edge $\mathrm{e}(\mathrm{u}, \mathrm{v})$ from the set E with the lowest cost such that u in $V_{T}$ and v is in $V \backslash V_{T}$ then add v to $V_{T}$ and add e to $E_{T}$
3. If $V_{T}=V$ break, otherwise go to step 2 .
