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Graphs

A graph is an ordered pair (V,E) where,

* V is the vertex set (also node set ) whose elements are the vertices, or nodes of the
graph.

* E is the edge set whose elements are the edges, or connections between vertices,
of the graph. If the graph is undirected, individual edges are unordered pairs.

« If the graph is directed, edges are ordered pairs

undirected directed



Graphs representation: list of nodes and edges
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Nodes: [0,1,2,3,4]
Edges: [10.1], [1,3],[1,4] [3,4], [3,2]]

Note that if the graph is connected, then the list of edges
IS enough to determine the graph completely.



Graphs representation: list of nodes and edges
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Nodes: [0,1,2,3,4]
Edges: [10.1], [1,3],[1,4] [3,4], [3,2]]

The order of the vertices is important only if the graph is directed.



Graphs representation: adjacency matrix
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Graphs representation: adjacency matrix

o|lo |~ |o
@DDD1U._.
®ol|l~|~|o|~|o
®1DD._._UD
@ ~|o|le|l~|o]|e
Tl Tlolole
CNONONONONO




Weighted Graphs

A weighted graph is a graph in which every edge has a weight (non-negative real number)




Weighted Graphs

A weighted graph is a graph in which every edge has a weight (non-negative real number)

Formally speaking :

A weight function w: E — R™. In other words, the function w associates to every edge e a positive number (weight) w(e)

A weighted graph is a graph G=(V,E) with a weight function w: E - R*.



Shortest distance

What is the shortest distance between A and B?




Shortest distance

What is the shortest distance between A and B?




Dijkstra algorithm

The basic Dijkstra algorithm operates on connected, undirected, weighted graph.

1: Dijkstra(Graph, source):

2: for each vertex v in Graph:

3: distance[v] := infinity // the initial distance from source to any other vertex v is infinity
4: previous[v] := undefined

5: distance[source] :=0 // Distance from the source to itself is zero

6: Q :=the set of all nodes in the Graph //all nodes are going in this container

7: while Q is not empty: // main loop

8: u := the node in Q with smallest distance from the source (what kind of queue you use here?)
9: remove u from Q //the source will be removed first

10: for each neighbor v of u: // v is still in the container Q

11: alt := distance[u] + length(u, v)

12: if alt < distance[v] //A shorter path from v to the source has been found
13: distance[v] := alt

14: previous[v] :=u

15: return distance[], previous| ]



Dijkstra algorithm

source

Input : weighted graph
with a source vertex

: Example



Dijkstra algorithm : Example

Q={a,b,c,d,e}
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Algorithm starts by
initializing the distance to
every vertex other than the
source to infinity. We also
create a queue Q and putin
it all vertices of G.



Dijkstra algorithm : Example

Q={a,b,c,d,e}
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When we enter the while loop
we dequeue the element in Q
with shortest distance to
source. In this case it is a.



Dijkstra algorithm : Example

Q={a,b,c,d,e} Q={b,c,d,e}
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When we enter the while loop
we dequeue the element in Q
with shortest distance to
source. In this case it is a.



Dijkstra algorithm : Example

source

Now we visit all neighbors of a
and update the distance to
them:

for each neighbor v of u:

Q={a,b,c,d,e} Q={b,c,d,e}

Q={b,c,d.e}
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alt := distance[u] + length(u, v)
if alt < distance[v]
distance[v] := alt




Dijkstra algorithm : Example

Q={a,b,c,de} Q={b,c,de} Q={b,c,d,e}
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0.5 In this case we update the

distance to b to 1.

Now we visit all neighbors of a
and update the distance to
them:
for each neighbor v of u:
alt := distance[u] + length(u, v)
if alt < distance[v]
distance[v] := alt



Dijkstra algorithm : Example

Q={a,b,c,de} Q={bcde} Q={bcde} Q={bc,de}
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Here we update the distance to
c to be 1 as well



Dijkstra algorithm : Example

Q={a,b,c,de} Q={bcde} Q={bcde} Q={bc,de}
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Here we update the distance to
¢ to be 1 as well

At this stage all neighbors of a
have been visited so we check
the queue again: if is not empty
we start the process again.



Dijkstra algorithm : Example

Q={a,b,c,d,e} Q={b,c,d,e}

Q={b,c,d,e}
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Dijkstra algorithm : Example

Q={a,b,c,de} Q={bcde} Q={bcde} Q={bc,de}
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In this case the distance does
not update—why ?



Dijkstra algorithm : Example
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The distance here also does not
update

Q={a,b,c,d,e} Q={b,c,d,e}
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Dijkstra algorithm : Example

Q={a,b,c,de} Q={bcde} Q={bcde} Q={bc,de}
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Dijkstra algorithm : Example
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Update the distance from a to d
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Dijkstra algorithm : Example
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And so on
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Example

Edges

vertices

We can view a mesh as a graph and apply
Dijkstra algorithm on it.



Example

Edges

vertices

We can view a mesh as a graph and apply Blue indicates the regions closest to the source
Dijkstra algorithm on it.



Spanning Tree

Let G = (V, E) be a connected weighted graph. A spanning tree for G is a subgraph of G which includes all of
the vertices of G and is a tree.

A graph might have more than one spanning tree

NN
N TR N

Spanning trees for G



Minimal Spanning Tree

Let G = (V, E,w) be a connected weighted graph. A minimal spanning tree for G is a spanning tree whose
sum of edge weights is as small as possible.

A graph might have more than one minimal spanning tree. However, if all edges in the graph have unique
weights then the minimal spanning tree is unique.

Minimal spanning trees for G



Kruskal’s Algorithm

Let ¢ = (V, E,w) be a connected weighted graph. The Kruskal’s algorithm is a greedy algorithm.

Informally, the algorithm can be given by the following three steps :

1. SetVytobeV,Set Er ={}. LetS =E

2. While S is not empty and T is not a spanning tree
1. Select an edge e from S with the minimum weight and delete e from S.
2. If e connects two separate trees of T then add e to E



Kruskal’s Algorithm Example




Kruskal’s Algorithm Example




Kruskal’s Algorithm Example




Kruskal’s Algorithm Example




Kruskal’s Algorithm Example




Kruskal’s Algorithm

Let G = (V, E,w) be a connected weighted graph. The Kruskal’s algorithm is a greedy algorithm

This can be implemented using union-find data-structure

1- A= {}

2-foreachv € V:

3- MAKE-SET(v)

4-foreach (u, v) in E ordered by weight(u, v), increasing:
5- if FIND-SET(u) # FIND-SET(v):

6- A=AV {(uv)}

7- UNION(u, v)

8-return A


https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Prim’s Algorithm

Let G = (V, E,w) be a connected weighted graph. The Prim’s algorithm is a greedy algorithm

Informally, the algorithm can be given by the following three steps :

1. Select an arbitrary vertex v from V. Set V; = {v}and E; ={ }

2. Grow the tree by one edge : choose an edge e(u,v) from the set E with the lowest cost such that uin V;
and visin V\V; thenadd vto V; and add e to E;

If V- = V break, otherwise go to step 2.



