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Graphs

A graph is an ordered pair (V,E) where,

• V is the vertex set (also node set ) whose elements are the vertices, or nodes of the 

graph.

• E is the edge set whose elements are the edges, or connections between vertices, 

of the graph. If the graph is undirected, individual edges are unordered pairs. 

• If the graph is directed, edges are ordered pairs

undirected directed



Graphs representation: list of nodes and edges

[ [0,1], [1,3],[1,4] [3,4], [3,2]]

Note that if the graph is connected, then the list of edges 

is enough to determine the graph completely.

[0,1,2,3,4]Nodes:

Edges:



Graphs representation: list of nodes and edges

[ [0,1], [1,3],[1,4] [3,4], [3,2]]

[0,1,2,3,4]Nodes:

Edges:

The order of the vertices is important only if the graph is directed.



Graphs representation: adjacency matrix



Graphs representation: adjacency matrix



Weighted Graphs

A weighted graph is a graph in which every edge has a weight (non-negative real number)



Weighted Graphs

A weighted graph is a graph in which every edge has a weight (non-negative real number)

A weight function 𝑤:𝐸 → 𝑅+. In other words, the function 𝑤 associates to every edge e a positive number (weight) 𝑤(𝑒)

Formally speaking :

A weighted graph is a graph G=(V,E) with a weight function 𝑤:𝐸 → 𝑅+. 



Shortest distance

What is the shortest distance between A and B?



Shortest distance

What is the shortest distance between A and B?



1: Dijkstra(Graph, source):
2: for each vertex v in Graph:
3: distance[v] := infinity    // the initial distance from source to any other vertex v is infinity

4: previous[v] := undefined
5: distance[source] := 0 // Distance from the source to itself is zero

6: Q := the set of all nodes in the Graph // all nodes are going in this container

7: while Q is not empty: // main loop

8: u := the node in Q with smallest distance from the source   (what kind of queue you use here?)

9: remove u from Q //the source will be removed first

10: for each neighbor v of u: // v is still in the container Q

11: alt := distance[u] + length(u, v)
12: if alt < distance[v] //A shorter path from v to the source has been found

13: distance[v] := alt
14: previous[v] := u
15: return distance[], previous[ ]

The basic Dijkstra algorithm operates on connected, undirected, weighted graph.

Dijkstra algorithm



Dijkstra algorithm : Example

Input : weighted graph 
with a source vertex



Dijkstra algorithm : Example

Algorithm starts by 
initializing the distance to 
every vertex other than the 
source to infinity. We also 
create a queue Q and put in 
it all vertices of 𝐺.



Dijkstra algorithm : Example

When we enter the while loop 
we dequeue the element in Q 
with shortest distance to 
source. In this case it is a.  



Dijkstra algorithm : Example

When we enter the while loop 
we dequeue the element in Q 
with shortest distance to 
source. In this case it is a.  



Dijkstra algorithm : Example

Now we visit all neighbors of 𝑎
and update the distance to 
them:

for each neighbor v of u:
alt := distance[u] + length(u, v)
if alt < distance[v]

distance[v] := alt



Dijkstra algorithm : Example

Now we visit all neighbors of 𝑎
and update the distance to 
them:

for each neighbor v of u:
alt := distance[u] + length(u, v)
if alt < distance[v]

distance[v] := alt

In this case we update the 
distance to b to 1.



Dijkstra algorithm : Example

Here we update the distance to 
c to be 1 as well



Dijkstra algorithm : Example

Here we update the distance to 
𝑐 to be 1 as well

At this stage all neighbors of 𝑎
have been visited so we check 
the queue again: if is not empty 
we start the process again.



Dijkstra algorithm : Example

We select 𝑏 (the closest 
element to a so far)



Dijkstra algorithm : Example

Remove b from the queue and 
start visiting all its neighbors 
and update the distance.

In this case the distance does 
not update—why ?



Dijkstra algorithm : Example

The distance here also does not 
update



Dijkstra algorithm : Example

Here we update the distance 
from 𝑎 to 𝑒 to be 4



Dijkstra algorithm : Example

Update the distance from 𝑎 to 𝑑



Dijkstra algorithm : Example

And so on



Example

We can view a mesh as a graph and apply 
Dijkstra algorithm on it.

vertices

Edges



Example

Blue indicates the regions closest to the sourceWe can view a mesh as a graph and apply 
Dijkstra algorithm on it.

vertices

Edges

Source



Spanning Tree

Let 𝐺 = (𝑉, 𝐸) be a connected weighted graph. A spanning tree for 𝐺 is a subgraph of 𝐺 which includes all of 
the vertices of 𝐺 and is a tree.

A graph might have more than one spanning tree

Spanning trees for 𝐺



Minimal Spanning Tree

Let 𝐺 = (𝑉, 𝐸, 𝑤) be a connected weighted graph. A minimal spanning tree for 𝐺 is a spanning tree whose 
sum of edge weights is as small as possible.

A graph might have more than one minimal spanning tree. However, if all edges in the graph have unique 
weights then the minimal spanning tree is unique.

Minimal spanning trees for 𝐺

𝐺



Kruskal’s Algorithm

Let 𝐺 = (𝑉, 𝐸, 𝑤) be a connected weighted graph. The Kruskal’s algorithm is a greedy algorithm.

1. Set 𝑉𝑇 𝑡𝑜 𝑏𝑒 𝑉, 𝑆𝑒𝑡 𝐸𝑇 = {}.  Let 𝑆 = 𝐸
2. While 𝑆 is not empty and 𝑇 is not a spanning tree

1. Select an edge e from 𝑆 with the minimum weight and delete e from 𝑆.
2. If 𝑒 connects two separate trees of 𝑇 then add 𝑒 to 𝐸𝑇

Informally, the algorithm can be given by the following three steps :



Kruskal’s Algorithm Example



Kruskal’s Algorithm Example



Kruskal’s Algorithm Example



Kruskal’s Algorithm Example



Kruskal’s Algorithm Example



Kruskal’s Algorithm

Let 𝐺 = (𝑉, 𝐸, 𝑤) be a connected weighted graph. The Kruskal’s algorithm is a greedy algorithm

1- A= {}
2-foreach 𝑣 ∈ 𝑉:
3- MAKE-SET(v)
4-foreach (u, v) in E ordered by weight(u, v), increasing:
5- if FIND-SET(u) ≠ FIND-SET(v):
6- 𝐴 = 𝐴 ∪ {(𝑢, 𝑣)}
7- UNION(u, v)
8-return A

This can be implemented using union-find data-structure

https://en.wikipedia.org/wiki/Disjoint-set_data_structure


Prim’s Algorithm

Let 𝐺 = (𝑉, 𝐸, 𝑤) be a connected weighted graph. The Prim’s algorithm is a greedy algorithm

1. Select an arbitrary vertex v from V. Set 𝑉𝑇 = 𝑣 𝑎𝑛𝑑 𝐸𝑇 =
2. Grow the tree by one edge : choose an edge e(u,v) from the set E with the lowest cost such that u in 𝑉𝑇

and v is in 𝑉\𝑉𝑇 then add v to 𝑉𝑇 and add e to 𝐸𝑇
3. If 𝑉𝑇 = 𝑉 break, otherwise go to step 2.

Informally, the algorithm can be given by the following three steps :


