Nearest Neighbors-Based Clustering and Classification Methods

Application of K-nearest neighbors: K Neighbors Classifier

This is an supervised classifier that takes into consideration the nearest k-points to an input point to determine the class that point belongs to. The idea is to use the majority vote of the neighbors of the input points.

Application of K-nearest neighbors: K Neighbors Classifier

This is an supervised classifier that takes into consideration the nearest k-points to an input point to determine the class that point belongs to. The idea is to use the majority vote of the neighbors of the input points.

Application of K-nearest neighbors: K Neighbors Classifier

This is an supervised classifier that takes into consideration the nearest k-points to an input point to determine the class that point belongs to. The idea is to use the majority vote of the neighbors of the input points.

Application of K-nearest neighbors: K Neighbors Classifier

This is an supervised classifier that takes into consideration the nearest k-points to an input point to determine the class that point belongs to. The idea is to use the majority vote of the neighbors of the input points.

```
In sklearn :
from sklearn.neighbors import KNeighborsClassifier # import the classifier
x = [[0], [1], [2], [3]] # the data
y = [0, 0, 1, 1] # the labels
```

neigh $=$ KNeighborsClassifier(n_neighbors=3) \# define the parameters of the classifiel neigh.fit(x, y)

```
# fit the data
```

Input K=3, and the point k
the majority vote is orange hence this point is classified orange

Application of K-nearest neighbors: K Neighbors Classifier

This is an supervised classifier that takes into consideration the nearest k-points to an input point to determine the class that point belongs to. The idea is to use the majority vote of the neighbors of the input points.

```
In sklearn :
from sklearn.neighbors import KNeighborsClassifier # import the classifier
```

```
X = [[0], [1], [2], [3]] # the data
```

X = [[0], [1], [2], [3]] \# the data
y = [0, 0, 1, 1] \# the labels

```
y = [0, 0, 1, 1] # the labels
```

neigh $=$ KNeighborsClassifier(n_neighbors=3) \# define the parameters of the classifiei neigh.fit(X, y) \# fit the data

If $k=1$, this classifier simply assigns the The point to the class of its nearest neighbor

Application of K-nearest neighbors: K Neighbors Classifier

This is an supervised classifier that takes into consideration the nearest k-points to an input point to determine the class that point belongs to. The idea is to use the majority vote of the neighbors of the input points.

```
In sklearn :
from sklearn.neighbors import KNeighborsClassifier # import the classifier
```

```
X = [[0], [1], [2], [3]] # the data
```

X = [[0], [1], [2], [3]] \# the data
y = [0, 0, 1, 1] \# the labels

```
y = [0, 0, 1, 1] # the labels
```

neigh $=$ KNeighborsClassifier(n_neighbors=3) \# define the parameters of the classifiei
neigh.fit (X, y) \# fit the data

If $k=1$, this classifier simply assigns the The point to the class of its nearest neighbor

What happens when k is huge ?

Application of K-nearest neighbors: K Neighbors Classifier

This is an supervised classifier that takes into consideration the nearest k-points to an input point to determine the class that point belongs to. The idea is to use the majority vote of the neighbors of the input points.

```
In sklearn :
from sklearn.neighbors import KNeighborsClassifier # import the classifier
```

```
X = [[0], [1], [2], [3]] # the data
```

X = [[0], [1], [2], [3]] \# the data
y = [0, 0, 1, 1] \# the labels

```
y = [0, 0, 1, 1] # the labels
```

neigh $=$ KNeighborsClassifier(n_neighbors=3) \# define the parameters of the classifiel
neigh.fit (X, y) \# fit the data

If $k=1$, this classifier simply assigns the The point to the class of its nearest neighbor

What happens when k is huge ?
We can choose a different distance function for this classifier to obtain different results -depending on the data this might be desirable.

Application of K-nearest neighbors: K Neighbors Classifier

This is an supervised classifier that takes into consideration the nearest k-points to an input point to determine the class that point belongs to. The idea is to use the majority vote of the neighbors of the input points.

```
In sklearn :
from sklearn.neighbors import KNeighborsClassifier # import the classifier
```

```
X = [[0], [1], [2], [3]] # the data
```

X = [[0], [1], [2], [3]] \# the data
y = [0, 0, 1, 1] \# the labels

```
y = [0, 0, 1, 1] # the labels
```

neigh $=$ KNeighborsClassifier(n_neighbors=3) \# define the parameters of the classifiel neigh.fit(X, y) \# fit the data

If $k=1$, this classifier simply assigns the The point to the class of its nearest neighbor

What happens when k is huge ?
We can choose a different distance function for this classifier to obtain different results -depending on the data this might be desirable.

Application of ε-nearest neighbors: Radius Neighbors Classifier

The idea is really similar to before, here instead of consider the closest k-nearest neighbor to determine the class, we Consider all instances within radius ε to determine the class of the input point

In sklearn :

from sklearn.neighbors import RadiusNeighborsClassifier

```
\(\mathrm{X}=[[0],[1],[2],[3]]\)
```

$y=[\theta, \theta, 1,1]$

```
neigh = RadiusNeighborsClassifier(radius=1.0)
neigh.fit(X, y)
# fit the data
```


Neighborhood graphs and their relatives (review)

K-Nearest Neighbor Graph (KNN Graph)

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one them.

K-Nearest Neighbor Graph (KNN Graph)

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one them. For a fixed integer k , connect the points x , y in X if either $d(x, y) \leq d\left(x, x_{k}\right)$ or $d(x, y) \leq d\left(y, y_{k}\right)$ where x_{k}, y_{k} are the $k^{\text {th }}$ nearest neighbors of x, y respectively. Doing do for all points we obtain a graph $G(X, E)$ where E is the set of edges connect the points in X as described above.

K-Nearest Neighbor Graph (KNN Graph)

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one them. For a fixed integer k , connect the points x , y in X if either $d(x, y) \leq d\left(x, x_{k}\right)$ or $d(x, y) \leq d\left(y, y_{k}\right)$ where x_{k}, y_{k} are the $k^{\text {th }}$ nearest neighbors of x, y respectively. Doing do for all points we obtain a graph $G(X, E)$ where E is the set of edges connect the points in X as described above.

Example of 1-NN graph
Sklearn implementation The graph that we obtain is called the K-nearest neighbor graph or K-NN graph.

K-Nearest Neighbor Graph (KNN Graph)

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one them. For a fixed integer k , connect the points x , y in X if either $d(x, y) \leq d\left(x, x_{k}\right)$ or $d(x, y) \leq d\left(y, y_{k}\right)$ where x_{k}, y_{k} are the $k^{\text {th }}$ nearest neighbors of x, y respectively. Doing do for all points we obtain a graph $G(X, E)$ where E is the set of edges connect the points in X as described above.

Example of 1-NN graph

Example of 2-NN graph

Sklearn implementation The graph that we obtain is called the K-nearest neighbor graph or K-NN graph.

K-Nearest Neighbor Graph (KNN Graph)

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one them.
For a fixed integer k , connect the points x , y in X if either $d(x, y) \leq d\left(x, x_{k}\right)$ or $d(x, y) \leq d\left(y, y_{k}\right)$ where x_{k}, y_{k} are the $k^{\text {th }}$ nearest neighbors of x, y respectively. Doing do for all points we obtain a graph $G(X, E)$ where E is the set of edges connect the points in X as described above.

Example of 1-NN graph

Example of 2-NN graph

Example of 3-NN graph

Sklearn implementation The graph that we obtain is called the K-nearest neighbor graph or K-NN graph.

ε - neighborhood graph

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one them.

For a fixed ε, connect the points x, y if $d(x, y) \leq \varepsilon$.
Doing do for all points we obtain a graph $G(X, E)$ where E is the set of edges connect the points in X as described above.

ε - neighborhood graph

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one them.

For a fixed ε, connect the points x, y if $d(x, y) \leq \varepsilon$.
Doing do for all points we obtain a graph $G(X, E)$ where E is the set of edges connect the points in X as described above.

This is equivalent to : Insert an edge if the disks around the points intersect each other.

Note that $d(x, y) \leq \frac{\varepsilon}{2}$ if and only if the two balls surrounding x and y intersect

ε - neighborhood graph

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one them.

For a fixed ε, connect the points x, y if $d(x, y) \leq \varepsilon$.
Doing do for all points we obtain a graph $G(X, E)$ where E is the set of edges connect the points in X as described above.

Trying different ε

ε - neighborhood graph

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one them.

For a fixed ε, connect the points x, y if $d(x, y) \leq \varepsilon$.
Doing do for all points we obtain a graph $G(X, E)$ where E is the set of edges connect the points in X as described above.

Trying different ε

Euclidian Minimal Spanning Tree (EMST)

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one them.

The EMST of X is a minimal spanning tree where the weight of the edge between each pair of points is the distance between those two points.

Graph Based Clustering Algorithms : Zahn’s algorithm

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one it.

1. Construct the EMST of X.
2. Remove the inconsistent edges to obtain a collection of connected components (clusters).
3. Repeat step (2) as long as the termination condition is not satisfied.

Graph Based Clustering Algorithms : Zahn's algorithm

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one it.

1. Construct the EMST of X.
2. Remove the inconsistent edges to obtain a collection of connected components (clusters).
3. Repeat step (2) as long as the termination condition is not satisfied.

In this case, an edge in the tree is called inconsistent if it has a length more than a certain given length L

Graph Based Clustering Algorithms : Zahn's algorithm

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one it.

1. Construct the EMST of X.
2. Remove the inconsistent edges to obtain a collection of connected components (clusters).
3. Repeat step (2) as long as the termination condition is not satisfied.

In this case, an edge in the tree is called inconsistent if it has a length more than a certain given length L

Graph Based Clustering Algorithms : Zahn's algorithm

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one it.

1. Construct the EMST of X.
2. Remove the inconsistent edges to obtain a collection of connected components (clusters).
3. Repeat step (2) as long as the termination condition is not satisfied.

In this case, an edge in the tree is called inconsistent if it has a length more than a certain given length L

Alternatively, we could simply consider the number of desired clusters k as an input

Graph Based Clustering Algorithms : Zahn's algorithm

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one it.

1. Construct the EMST of X.
2. Remove the inconsistent edges to obtain a collection of connected components (clusters).
3. Repeat step (2) as long as the termination condition is not satisfied.

In this case, an edge in the tree is called inconsistent if it has a length more than a certain given length L

Alternatively, we could simply consider the number of desired clusters k as an input
Note that deleting k edges from the spanning tree results in $k+1$ connected components. In particular when $k=1$, we obtain 2 subtrees

Graph Based Clustering Algorithms : Zahn's algorithm

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d} with a distance function d defined one it.

1. Construct the EMST of X.
2. Remove the inconsistent edges to obtain a collection of connected components (clusters).
3. Repeat step (2) as long as the termination condition is not satisfied.

In this case, an edge in the tree is called inconsistent if it has a length more than a certain given length L

Alternatively, we could simply consider the number of desired clusters k as an input
Note that deleting k edges from the spanning tree results in $k+1$ connected components. In particular when $k=1$, we obtain 2 subtrees

Graph Based Clustering Algorithms : Zahn’s algorithm

```
\bullet\bullet
    \bullet\bullet
    Input : point cloud and
    Number of connected
    components k
```


Graph Based Clustering Algorithms : Zahn’s algorithm

Graph Based Clustering Algorithms : Zahn’s algorithm

Graph Based Clustering Algorithms : Zahn’s algorithm

Graph Based Clustering Algorithms : Zahn’s algorithm

Input : point cloud and Number of connected components k

Construct EMST

Delete an edge

Graph Based Clustering Algorithms: Zahn's algorithm

Until the termination criterion is satisfied

Graph Based Clustering Algorithms : ε - neighborhood graph

Choose an ε And construct the graph \qquad

Graph Based Clustering Algorithms : ε - neighborhood graph

Choose an ε And construct the graph

Recall : connected components of a graph

What is a connected component of a graph ?
How can we find the connected components of a graph ?
See this video for a review

Networkx

Introduction on networkx and how to use its basic functions.

```
import networkx as nx
G=nx.Graph()
G.add_edge(1,2) # default edge data=1
G.add_edge(2,3,weight=0.9) # specify edge data
```

Finding connected components of a graph using networkx. See here

```
import networkx as nx
G = nx.path_graph(4)
G.add_path([10, 11, 12])
sorted(nx.connected_components(G), key = len, reverse=True)
```

Drawing a graph using networkx

```
import matplotlib.pyplot as plt
import networkx as nx
G=nx.path_graph(3)
nx.draw(G) # networkx draw()
plt.draw() # pyplot draw()
```

