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class that point belongs to. The idea is to use the majority vote of the neighbors of the input points.
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In sklearn :

If k=1, this classifier simply assigns the
The point to the class of its nearest neighbor

What happens when k is huge ?

We can choose a different distance function for this classifier
to obtain different results –depending on the data this might be desirable.

See this sklearn example

http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py


Application of ɛ-nearest neighbors: 𝑅𝑎𝑑𝑖𝑢𝑠 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

The idea is really similar to before, here instead of consider the closest k-nearest neighbor to determine the class, we 
Consider all instances within radius ɛ to determine the class of the input point

In sklearn :

Sklearn example

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html#sklearn.neighbors.RadiusNeighborsClassifier


Neighborhood graphs and their 
relatives (review)



K-Nearest Neighbor Graph (KNN Graph)

Sklearn implementation 

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.
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Insert an edge if the disks 
around the points intersect 
each other.
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ɛ

2
if and only if the two balls surrounding x and y intersect  

ɛ- neighborhood graph 

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.radius_neighbors_graph.html#sklearn.neighbors.radius_neighbors_graph


For a fixed ɛ, connect the points 𝑥, 𝑦 if 𝑑 𝑥, 𝑦 ≤ ɛ.

Sklearn implementation

Doing do for all points we obtain a graph 𝐺(𝑋, 𝐸) where 𝐸 is the set of edges connect the points in 𝑋 as 
described above.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Trying different ɛ

ɛ- neighborhood graph 

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.radius_neighbors_graph.html#sklearn.neighbors.radius_neighbors_graph


For a fixed ɛ, connect the points 𝑥, 𝑦 if 𝑑 𝑥, 𝑦 ≤ ɛ.

Sklearn implementation

Doing do for all points we obtain a graph 𝐺(𝑋, 𝐸) where 𝐸 is the set of edges connect the points in 𝑋 as 
described above.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Trying different ɛ

ɛ- neighborhood graph 

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.radius_neighbors_graph.html#sklearn.neighbors.radius_neighbors_graph


Euclidian Minimal Spanning Tree (EMST)

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

The EMST of X is a minimal spanning tree where the weight of the edge between each pair of 

points is the distance between those two points. 

Image source-Wikipedia article

https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree


Graph Based Clustering Algorithms : Zahn’s algorithm

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one it.

1. Construct the EMST of X.
2. Remove the inconsistent edges to obtain a collection of connected components (clusters).
3. Repeat step (2) as long as the termination condition is not satisfied.

In this case, an edge in a the tree is called inconsistent if it has a length more than certain given length L

This definition of consistent is not always idea!

Alternatively, we could simply consider the number of desired clusters k as an input

Note that deleting k edges from the spanning tree results in k+1 connected components. In particular when 
k=1, we obtain 2 subtrees
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http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.3334&rep=rep1&type=pdf


Graph Based Clustering Algorithms : Zahn’s algorithm

Input : point cloud and 
Number of connected 
components k



Graph Based Clustering Algorithms : Zahn’s algorithm

Input : point cloud and 
Number of connected 
components k Construct EMST



Graph Based Clustering Algorithms : Zahn’s algorithm

Input : point cloud and 
Number of connected 
components k Construct EMST

Delete an edge



Graph Based Clustering Algorithms : Zahn’s algorithm

Input : point cloud and 
Number of connected 
components k Construct EMST

Delete an edge



Graph Based Clustering Algorithms : Zahn’s algorithm

Input : point cloud and 
Number of connected 
components k Construct EMST

Delete an edge



Graph Based Clustering Algorithms : Zahn’s algorithm
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components k Construct EMST

Until the termination criterion is satisfied
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Recall : connected components of a graph

How can we find the connected components of a graph ?
See this video for a review

What is a connected component of a graph ?

connected 
components 

https://youtu.be/lRzbE739Cnw?t=379


Networkx

Finding connected components of a graph using networkx. See here

Introduction on networkx and how to use its basic functions.

Drawing a graph using networkx

https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.algorithms.components.connected.connected_components.html#networkx.algorithms.components.connected.connected_components
https://networkx.github.io/documentation/networkx-1.9.1/reference/introduction.html
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.drawing.nx_pylab.draw.html

