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Hierarchical clustering is usually represented by a tree called the dendrogram that represents the clusterings
at all levels. 
Each node in the tree represents a cluster
• In particular the root of the tree represents the cluster that contains all points
• The leaves of the tree represents the clusters that contain the individual points of the data set.
• As we go from the leaves to the root, clusters start to merge according to some similarity criterion.

root 

leaf

There are two types of Hierarchical clustering 
Agglomerative : bottom up (Merge). 
Divisive : Top down (Split). 



General Steps

General Steps in a standard hierarchical agglomerative clustering algorithm:

1. Compute the distance matrix,  or the dissimilarity, between all points in the input data. Choosing the metric will impact 
the results largely.

2. Initialize every point in the dataset to be its own cluster

3. Compute the distance between all clusters
4. Combine the closest two clusters:  the two clusters 𝑐𝑖𝑎𝑛𝑑 𝑐𝑗 𝑤𝑖𝑡ℎmin

𝑖,𝑗
𝐷(𝑐𝑖 , 𝑐𝑗)

5. Remove the clusters 𝑐𝑖𝑎𝑛𝑑 𝑐𝑗 and add the cluster 𝑐𝑖 + 𝑐𝑗. 

6. Go back to 3 and repeat until we have a single cluster.
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Question : how do we measure the distance between two clusters ?

This is important because step 3 we need to measure the distance between clusters rather than points.



Given two clusters X and Y. How do we measure the distance between them ?

Distance between clusters



Distance between clusters

𝐷 𝑋, 𝑌 := min
𝑥 𝑖𝑛 𝑋,𝑦 𝑖𝑛 𝑌

𝑑(𝑥, 𝑦)

Given two clusters X and Y. How do we measure the distance between them ?

One way is to measure the minimal distance between all points of X and Y.
This distance induce single linkage clustering.

https://en.wikipedia.org/wiki/Single-linkage_clustering


Distance between clusters

𝐷 𝑋, 𝑌 :=
1

|𝑋||𝑌|
 

𝑥 𝑖𝑛 𝑋,𝑦 𝑖𝑛𝑌

𝑛

𝑑(𝑥, 𝑦)

Given two clusters X and Y. How do we measure the distance between them ?

We could also consider the mean distance between the points of the clusters



Distance between clusters

Given two clusters X and Y. How do we measure the distance between them ?

There are other measures as well : The minimal energy criterion , the distance between the centroids of the clusters

https://en.wikipedia.org/wiki/Energy_distance


Distance between clusters

Given two clusters X and Y. How do we measure the distance between them ?

There are other measures as well : The minimal energy criterion , the distance between the centroids of the clusters

For efficient calculations we usually require the following condition:
Knowing the distance D(A,C), D(B,C) 
Implies we can calculate in constant time the distance D(A+B,C)

https://en.wikipedia.org/wiki/Energy_distance














Consider the connected components of the ɛ-neighborhood graph as we continuously increase ɛ from zero to infinity.

Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑 with a distance function 𝑑 defined one them.

Single Linkage Hierarchical Clustering and the ɛ- Neighborhood Graph

Every point is a connected 
component

When ɛ is a little larger we start 
some clusters starts to get form  

When ɛ is even larger we have
few clusters 

As the clusters get larger and larger

At some point all 
points become a par 
to of a single cluster
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Recall : Kruskal’s Algorithm

Let 𝐺 = (𝑉, 𝐸, 𝑤) be a connected weighted graph. 

1. Set 𝑉𝑇 𝑡𝑜 𝑏𝑒 𝑉, 𝑆𝑒𝑡 𝐸𝑇 = {}.  Let 𝑆 = 𝐸
2. While 𝑆 is not empty and 𝑇 is not a spanning tree

1. Select an edge e from 𝑆 with the minimum weight and delete e from 𝑆.
2. If 𝑒 connects two separate trees of 𝑇 then add 𝑒 to 𝐸𝑇

Informally, the algorithm can be given by the following three steps :
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Lance–Williams algorithms

1. Compute the distance matrix : 𝐷 = {𝐷𝑖𝑗: distance between i and j for i, j between 1 and n}

2. Iterate n times :
1. Find  𝑖 and 𝑗 with min

𝑖,𝑗
𝐷(𝑐𝑖 , 𝑐𝑗)

2. Add the cluster 𝑖 + 𝑗 and delete the clusters 𝑖 and 𝑗
3. For each remaining cluster k 

1. 𝐷𝑘,𝑖+𝑗 = 𝑚𝑖𝑛{𝐷𝑘,𝑗 , 𝐷𝑘,𝑖}

Single Linkage H-Clustering 
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This can be replaced by a more general condition.
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The neat thing about the algorithm : all needs to be changed 
is how to update the new distance  

Every algorithm has a special
𝑎𝑖, 𝑎𝑗, β and α
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For complete linkage, choose 𝑎𝑖= ? 𝑎𝑗 =?α=? and ?

Every algorithm has a special
𝑎𝑖, 𝑎𝑗, β and α
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Ward’s method :𝑎𝑙 =
nl+nk

ni+nj+nk
, β =

−nk

ni+nj+nk
,α=0
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What is the complexity here ?

𝑛 steps 
𝑛2 steps 

𝑛 steps at most 

Constant time!

𝑛2 steps 

This is just the naïve implementation, there are better algorithms that perform with 𝑂(𝑛2)



• Begin with the entire dataset and consider it as a single cluster 
• At each iteration, we select an existing cluster and split it into two clusters using any clustering algorithm we 

have seen so far (k-means for instance). 

Divisive Clustering 



In Sklearn

Scikit learn supports Agglomerative Clustering . Many features discussed in this lecture are also supported.

http://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering

