Graph Laplacian

Mustafa Hajij

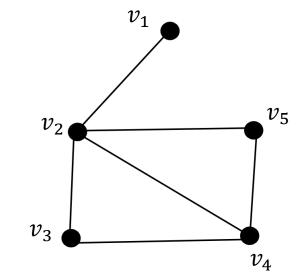
Graph Laplacian

Let G be a graph on n nodes. The Graph Laplacian is an n by n matrix given by :

L = D - A

Where D is the degree matrix and A is the adjacency matrix

. .



0

-1

3

-1

-1 -1

0

0

-1

2

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \qquad L = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 2 \\ 0 & -1 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Symmetric Graph Laplacian

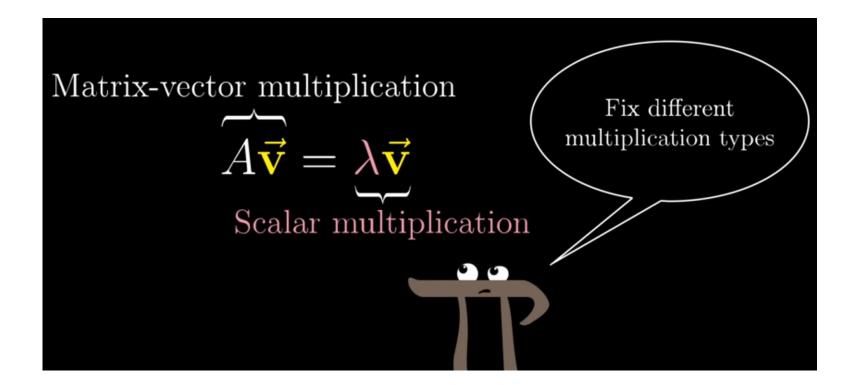
$$L^{\text{sym}} := D^{-1/2} L D^{-1/2} = I - D^{-1/2} A D^{-1/2},$$

Explicitly this is given by:

$$L^{ ext{sym}}_{i,j} := egin{cases} 1 & ext{if } i=j ext{ and } \deg(v_i)
eq 0 \ -rac{1}{\sqrt{\deg(v_i) \deg(v_j)}} & ext{if } i
eq j ext{ and } v_i ext{ is adjacent to } v_j \ 0 & ext{otherwise.} \end{cases}$$

Eigenvalues and Eignenvector of a matrix

Watch this lecture for review



Eigenvalues and Eignenvector of a matrix

A squared matrix is symmetric if $A = A^T$

A squared matrix is symmetric if $A = A^T$

A squared matrix is symmetric if $A = A^T$

Symmetric matrices are very important in engineering and the solution of many problems come down to finding eigenvectors and eigenvalues for some symmetric matrix

A squared matrix is symmetric if $A = A^T$

Symmetric matrices are very important in engineering and the solution of many problems come down to finding eigenvectors and eigenvalues for some symmetric matrix

If $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix then it has an orthonormal set of eigenvectors u_1, u_2, \ldots, u_n corresponding to (not necessarily distinct) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$

A squared matrix is symmetric if $A = A^T$

Symmetric matrices are very important in engineering and the solution of many problems Come down to finding eigenvectors and eigenvalues for some symmetric matrix

If $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix then it has an orthonormal set of eigenvectors u_1, u_2, \ldots, u_n corresponding to (not necessarily distinct) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$

The graph Laplacian is a symmetric matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

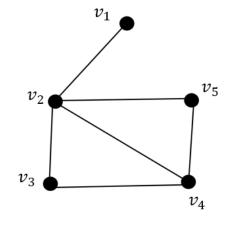
A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

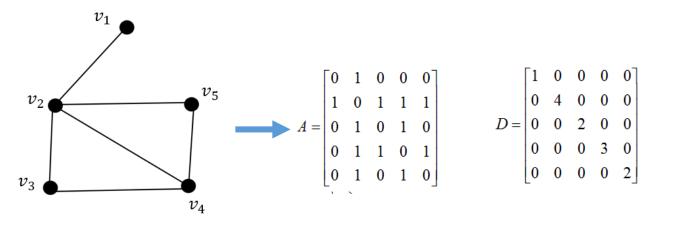
A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero



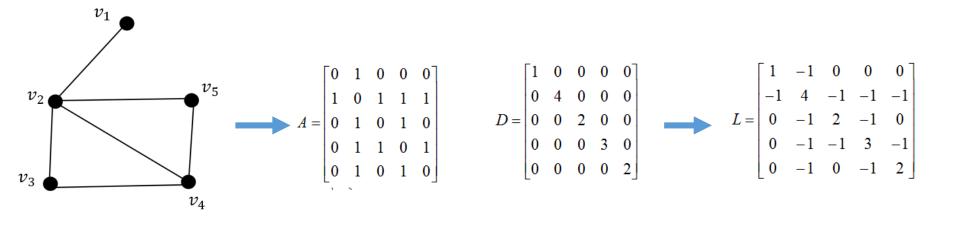
A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero



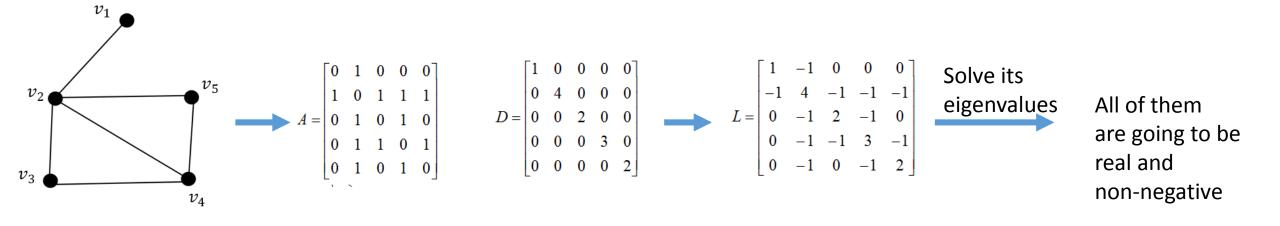
A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero



A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero



Eigenvalues and Eignenvector of the Laplacian

We can think about a mesh as a graph. We can compute the eigenvalues And eigenvectors of the Laplacian of this graph

Eigenvalues and Eignenvector of the Laplacian

We can think about a mesh as a graph. We can compute the eigenvalues And eigenvectors of the Laplacian of this graph

The first 10 eigenvectors of this mesh

Eigenvalues and Eignenvector in Python

In python you can compute the eigenvalues and the eigenvectors of a matrix : <u>numpy.linalg.eig</u>

From the data to the graph

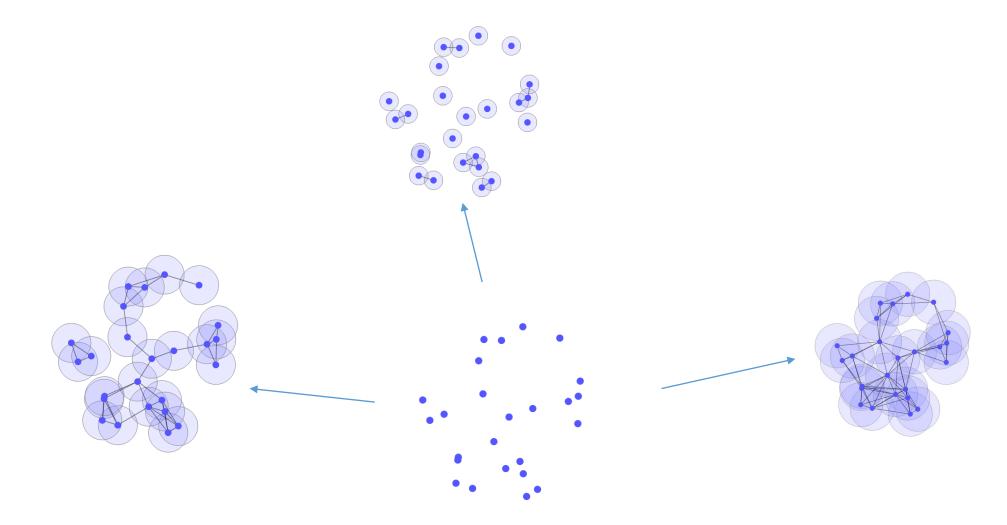
Given the data $X = \{p_1, p_2, ..., p_n\}$, we begin by constructing a graph G on the top of the data X:

- The points in *X* are the vertices of the graph
- The edges in the graph and their weights are determined by how close together and are in X

Three common methods to construct graphs :

- The neighborhood graphs (ϵ neighborhood graph or the knn graph)
- The complete graph on the set *X*.

Similarity Graph: E- Neighborhood Graph



Construct the ε – neighborhood graph

A common problem here is which ϵ we should choose?

Similarity Graph: The fully connected graph

Suppose that we are given a set of points $X = \{p_1, p_2, ..., p_n\}$ in \mathbb{R}^d . Another way to construct a graph on the top of the data X is by connecting all points in X to each other. In this case we weight all edges by $s_{ij} := s(x_i, x_j)$ defined as follows :

$$s(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$$