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Part I
DBSCAN 



DBSCAN

In DBSCAN points are classified as follows :

• core points : A point p is said to be a core point if at least minPts points are within a distance ε

• A point q is directly reachable from p if the point q is within distance ε from point p and p must be a core point.

• Density-reachable points : A point q is reachable from p if there is a path p1, ..., pn with p1 = p and pn = q, 
where each pi+1 is directly reachable from pi (all the points on the path must be core points, with the possible exception of q).

• Outliers : All points not reachable from any other point are outliers.
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DBSCAN-Reachability

If p is reachable from q. Does that mean q is reachable from p ? Explain. Can you give an example from the 

points below?
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DBSCAN-Density-connectedness 
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2.If a point is density-reachable from any point of the cluster, it is part of the cluster as well.
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DBSCAN-Algorithm 

1.Find the ε neighbors graph. 

2.Identify the core points with more than min_samples neighbors.

3.Find the connected components of core points on the neighbor graph, ignoring all non-core points.

4.Assign each non-core point to a nearby cluster if the cluster is an ε neighbor, otherwise assign it to 

noise.

Input a data X, a positive real number ε and a positive integer min_samples



DBSCAN-sklearn

Sklearn example

Sklearn DBSCAN

http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN


Comparison between DBSCAN and other clustering algorithms 

source

http://scikit-learn.org/stable/modules/clustering.html#clustering


Part II
Graph Clustering 



Let G(V,E) be a graph. Let 𝑢, 𝑣 be two vertices in V. Define the following similarity measure between the nodes 𝑢, 𝑣 :

𝑆𝑖𝑚 𝑢, 𝑣 =
|𝐻 𝑢 ∩𝐻 𝑣 |

𝐻 𝑢 |𝐻 𝑣 |

Scan algorithm is similar to DBSCAN algorithm. The only difference here is that we cluster the nodes of a graph instead
Of the points in a point cloud.

Scan Algorithm (A Structural Clustering Algorithm for Networks)
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Let G(V,E) be a graph. Let 𝑢, 𝑣 be two vertices in V. Define the following similarity measure between the nodes 𝑢, 𝑣 :

Scan algorithm is similar to DBSCAN algorithm. The only difference here is that we cluster the nodes of a graph instead
Of the points in a point cloud.

The ε neighbor of a node v 𝑁ε 𝑣 is given as the set of node in V whose similarity exceeds the value ε :

𝑁ε 𝑣 = {𝑢∈𝐻(𝑣) |𝑆𝑖𝑚 𝑢, 𝑣 ≥ ε}

𝑆𝑖𝑚 𝑢, 𝑣 =
|𝐻 𝑢 ∩𝐻 𝑣 |
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Using this notion of 𝑁ε 𝑣 the same definitions that we defined on DBSCAN can be adapted on graph and in this way we
Obtain a clustering for the nodes of the graph that is analogous to the DBSCAN on point clouds.
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Using this notion of 𝑁ε 𝑣 the same definitions that we defined on DBSCAN can be adapted on graph and in this way we
Obtain a clustering for the nodes of the graph that is analogous to the DBSCAN on point clouds.

For instance, a vertex said to be a core vertex if its ε neighborhood as a cardinality at least min_samples. 
In a similar fashion we can define the notion of reachability and other definitions we defined earlier.  

Scan Algorithm (A Structural Clustering Algorithm for Networks)



Zahn’s algorithm

Suppose that we are given a set of a weighted graph 𝐺.

1. Construct the MST of G.
2. Remove the inconsistent edges to obtain a collection of connected components (clusters).
3. Repeat step (2) as long as the termination condition is not satisfied.

In this case, an edge in the tree is called inconsistent if it has a length more than a certain given length L

Zahn’s algorithm that we used to obtain a clustering algorithm on point cloud can be simply used to obtain a 
clustering algorithm on graphs as follows.

The connected components of the remaining forest are the clusters of the graph



Shared Nearest Neighbor (SNN) 

Shared Nearest Neighbor



Shared Nearest Neighbor graph

Given a graph 𝐺 = 𝐺 𝑉, 𝐸 𝑤𝑒 𝑐𝑎𝑛 𝑐𝑜𝑛𝑡𝑟𝑢𝑐𝑡 𝑎 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑆𝑁𝑁 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠

Add the number of shared edges between every two vertices as a weight for the edge insert 
edge. If the number of shared edges is zero then do not insert an edge.

Shared Nearest Neighbor



Shared Nearest Neighbor graph
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Add the number of shared edges between every two 
vertices as a weight for the edge insert edge. If the number 
of shared edges is zero then do not insert an edge.

Shared Nearest Neighbor

Example



Shared Nearest Neighbor (SNN) Clustering 

Input : a graph 𝐺 = 𝐺 𝑉, 𝐸 𝑎𝑛𝑑 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

• Calculate the Shared Nearest Neighbor Graph of input graph G 

• Removes edges from the SNN with weight less than τ 

τ

τ= 2 τ= 3


