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In DBSCAN points are classified as follows :
e core points : A point p is said to be a core point if at least min_samples points are within a distance &

* Apoint gis directly reachable from p if the point g is within distance € from point p and p must be a core point.
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In DBSCAN points are classified as follows :
e core points : A point p is said to be a core point if at least min_samples points are within a distance &
* Apoint gis directly reachable from p if the point g is within distance € from point p and p must be a core point.

» Density-reachable points : A point q is reachable from p if there is a path p,, ..., p, withp, =pand p, =g,
where each p,,, is directly reachable from p; (all the points on the path must be core points, with the possible exception of g).
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In DBSCAN points are classified as follows :

e core points : A point p is said to be a core point if at least min_samples points are within a distance &

* Apoint gis directly reachable from p if the point g is within distance € from point p and p must be a core point.
» Density-reachable points : A point q is reachable from p if there is a path p,, ..., p, withp, =pand p, =g,

where each p,,, is directly reachable from p; (all the points on the path must be core points, with the possible exception of g).

* Qutliers : All points not reachable from any other point are
called outliers.
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DBSCAN

In DBSCAN points are classified as follows :

e core points : A point p is said to be a core point if at least min_samples points are within a distance ¢

* Apoint gis directly reachable from p if the point g is within distance € from point p and p must be a core point.
» Density-reachable points : A point q is reachable from p if there is a path p,, ..., p, withp, =pand p, =g,

where each p,,, is directly reachable from p; (all the points on the path must be core points, with the possible exception of g).

* Qutliers : All points not reachable from any other point are
called outliers.
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DBSCAN-Reachability

If p is reachable from g. Does that mean g is reachable from p ? Explain. Can you give an example from the
points below?
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DBSCAN-Density-connectedness

Two points p and q are density-connected if there is a point o such that both p and g are
reachable from o.
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DBSCAN-Density-connectedness

Two points p and q are density-connected if there is a point o such that both p and g are
reachable from o.

A cluster then satisfies two properties:
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DBSCAN-Density-connectedness

Two points p and q are density-connected if there is a point o such that both p and g are
reachable from o.

A cluster then satisfies two properties:

1.All points within the cluster are mutually density-connected.
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DBSCAN-Density-connectedness

Two points p and q are density-connected if there is a point o such that both p and g are
reachable from o.

A cluster then satisfies two properties:

1.All points within the cluster are mutually density-connected.
2.1f a point is density-reachable from any point of the cluster, it is part of the cluster as well.
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DBSCAN-Algorithm

Input a data X, a positive real number € and a positive integer min_samples

1.Find the € neighbors graph.
2.ldentify the core points with more than min_samples neighbors.

3.Find the connected components of core points on the neighbor graph, ignoring all non-core points.

4.Assign each non-core point to a nearby cluster if the cluster is an € neighbor, otherwise assign it to
noise.



DBSCAN-sklearn

Sklearn example

Sklearn DBSCAN



http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN

Comparison between DBSCAN and other clustering algorithms

Geometry (metric

Method name Parameters Scalability Usecase used)
K-Means number of \ery large General-purpose, even cluster  Distances between
clusters n samples , medium size, flat geometry, not too points
n_clusters with many clusters
MiniBatch code
Spectral number of Medium n samples Few clusters, even cluster Graph distance (e.g.
clustering clusters small n_clusters size, non-flat geometry nearest-neighbor graph)
Ward number of Large n sample= and Many clusters, possibly Distances between
hierarchical clusters n_clusters connectivity constraints points
clustering
Agglomerative number of Large n sample= and Many clusters, possibly Any pairwise distance
clustering clusters, linkage n_clusters connectivity constraints, non
type, distance Euclidean distances
DBSCAN neighborhood \ery large Non-flat geometry, uneven Distances between

size

n samples . medium

n_clusters

cluster sizes

nearest points

source


http://scikit-learn.org/stable/modules/clustering.html#clustering
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Scan Algorithm (A Structural Clustering Algorithm for Networks)

Scan algorithm is similar to DBSCAN algorithm. The only difference here is that we cluster the nodes of a graph instead
Of the points in a point cloud.

Let G(V,E) be a graph. Let u, v be two vertices in V. Define the following similarity measure between the nodes u, v :

|H(u)NH ()|
VIHWI|H®)]

Sim(u,v) =
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Scan Algorithm (A Structural Clustering Algorithm for Networks)

Scan algorithm is similar to DBSCAN algorithm. The only difference here is that we cluster the nodes of a graph instead
Of the points in a point cloud.

Let G(V,E) be a graph. Let u, v be two vertices in V. Define the following similarity measure between the nodes u, v :

|H(u)NH ()|
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Sim(u,v) =
Here H(v) is the set of direct neighbors of v : H(v)={u € V|(u,v) EE} U {v}.

The € neighbor of a node v Ng(v) is given as the set of node in V whose similarity exceeds the value ¢ :

N.(v) = {ueH@) |Sim(u,v) = ¢}



Scan Algorithm (A Structural Clustering Algorithm for Networks)

Using this notion of N¢(v) the same definitions that we defined on DBSCAN can be adapted on graph and in this way we
Obtain a clustering for the nodes of the graph that is analogous to the DBSCAN on point clouds.



Scan Algorithm (A Structural Clustering Algorithm for Networks)

Using this notion of N¢(v) the same definitions that we defined on DBSCAN can be adapted on graph and in this way we
Obtain a clustering for the nodes of the graph that is analogous to the DBSCAN on point clouds.

For instance, a vertex said to be a core vertex if its € neighborhood as a cardinality at least min_samples.
In a similar fashion we can define the notion of reachability and other definitions we defined earlier.



Zahn’s algorithm

Zahn's algorithm that we used to obtain a clustering algorithm on point cloud can be simply used to obtain a
clustering algorithm on graphs as follows.

Suppose that we are given a set of a weighted graph G.

1. Construct the MST of G.
2. Remove the inconsistent edges to obtain a collection of connected components (clusters).

3. Repeat step (2) as long as the termination condition is not satisfied.

The connected components of the remaining forest are the clusters of the graph

In this case, an edge in the tree is called inconsistent if it has a length more than a certain given length L



Shared Nearest Neighbor (SNN)

Shared Nearest Neighbor
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Shared Nearest Neighbor graph
Given a graph G = G(V,E) we can contruct a weighted graph called the SNN as follows

Add the number of shared edges between every two vertices as a weight for the edge insert
edge. If the number of shared edges is zero then do not insert an edge.

Shared Nearest Neighbor



Shared Nearest Neighbor graph
Given a graph G = G(V,E) we can contruct a weighted graph called the SNN as follows

Add the number of shared edges between every two
vertices as a weight for the edge insert edge. If the number
of shared edges is zero then do not insert an edge.

Example
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Shared Nearest Neighbor (SNN) Clustering
Input : a graph G = G(V,E) and a positive integer t

* Calculate the Shared Nearest Neighbor Graph of input graph G

 Removes edges from the SNN with weight less than t
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