Spectral Embedding and Locally Linear Embedding

MUSTAFA HAJIJ

Manifolds

Mathematically, a manifold is a space that looks locally like a patch. The dimension of this patch is called the dimension of the manifold.

Manifolds

Mathematically, a manifold is a space that looks locally like a patch. The dimension of this patch is called the dimension of the manifold.

Surfaces are examples of manifolds. In particular, surfaces are 2-manifolds.

Manifolds

Mathematically, a manifold is a space that looks locally like a patch. The dimension of this patch is called the dimension of the manifold.

Surfaces are examples of manifolds. In particular, surfaces are 2-manifolds.

Manifolds

Mathematically, a manifold is a space that looks locally like a patch. The dimension of this patch is called the dimension of the manifold.

Surfaces are examples of manifolds. In particular, surfaces are 2-manifolds.

For every point p on the surface
there exists a small disk
that is mapped via a map f to the unit disk in the plane.

Manifolds

Mathematically, a manifold is a space that looks locally like a patch. The dimension of this patch is called the dimension of the manifold.

Surfaces are examples of manifolds. In particular, surfaces are 2-manifolds.

For every point p on the surface there exists a small disk
that is mapped via a map f to the unit disk in the plane.

Locally linear embedding

PCA and MDS, do not give good results in nonlinear dimensionality reduction problems.

Locally linear embedding

PCA and MDS, do not give good results in nonlinear dimensionality reduction problems.

LLE recovers the global data by collecting local information surrounding each point in the data and then stitch these information together

Locally linear embedding

PCA and MDS, do not give good results in nonlinear dimensionality reduction problems.

LLE recovers the global data by collecting local information surrounding each point in the data and then stitch these information together

Locally linear embedding does not require the computation of the pair-wise distance matrix of the data such as ISOMAP and MDS.

Basic idea

We need to optimize two objective functions in LLE :
I- $\quad \varepsilon(W)=\sum_{\mathrm{i}}\left|\vec{X}_{\mathrm{i}}-\Sigma_{\mathrm{j}} W_{\mathrm{ij}} \vec{X}_{\mathrm{j}}\right|^{2} \quad \begin{aligned} & \text { Here we are given the points } X_{i} \text { and } \\ & \text { we are optimizing the weights } W_{i j}\end{aligned}$

Basic idea

We need to optimize two objective functions in LLE :

I-

$$
\varepsilon(W)=\sum_{\mathrm{i}}\left|\vec{X}_{\mathrm{i}}-\Sigma_{\mathrm{j}} W_{\mathrm{ij}} \vec{X}_{\mathrm{j}}\right|^{2} \quad \begin{aligned}
& \text { Here we are given the points } X_{i} \text { and } \\
& \text { we are optimizing the weights } W_{i j}
\end{aligned}
$$

II- $\Phi(Y)=\sum_{\mathrm{i}}\left|\vec{Y}_{\mathrm{i}}-\sum_{\mathrm{j}} W_{\mathrm{ij}} \vec{Y}_{\mathrm{j}}\right|^{2} \quad \begin{aligned} & \text { Here we fix the weights } W_{i j} \\ & \text { while optimizing the coordinates } Y_{i}\end{aligned}$

Basic idea

Steps:

1- Identify the k-NN graph

Basic idea

Steps:

1- Identify the k-NN graph

2-Compute Wij such that $\sum_{\mathrm{i}}\left|\vec{X}_{\mathrm{i}}-\Sigma_{\mathrm{j}} W_{\mathrm{ij}} \vec{X}_{\mathrm{j}}\right|^{2} \quad$ is minimal
Subject to the constrains :
(a) $\mathrm{Wij}=0$ when Xj does not belong to the set of neighbors of Xi ;
(b) $\sum_{j=1}^{k} W_{i j}=1$

Basic idea

Steps :

1- Identify the $\mathrm{k}-\mathrm{NN}$ graph

2-Compute Wij such that $\sum_{\mathrm{i}}\left|\vec{X}_{\mathrm{i}}-\Sigma_{\mathrm{j}} W_{\mathrm{ij}} \vec{X}_{\mathrm{j}}\right|^{2} \quad$ is minimal
Subject to the constrains :
(a) $\mathrm{Wij}=0$ when Xj does not belong to the set of neighbors of Xi ;
(b) $\sum_{j=1}^{k} W_{i j}=1$

3-Compute Yi such that $\sum_{\mathrm{i}}\left|\vec{Y}_{\mathrm{i}}-\Sigma_{\mathrm{j}} W_{\mathrm{ij}} \vec{Y}_{\mathrm{j}}\right|^{2}$ is minimal

Details

Define $V_{i}=\left[\begin{array}{ll}X_{i(1)} X_{i(2)} & \ldots X_{i(k)}\end{array}\right]$

Details

Define $V_{i}=\left[\begin{array}{ll}X_{i(1)} X_{i(2)} & \ldots X_{i(k)}\end{array}\right]$

$$
W_{i}=\left[\begin{array}{ll}
W_{i 1} W_{i 2} & \ldots W_{i k}
\end{array}\right]^{T}
$$

Details

Define $V_{i}=\left[\begin{array}{ll}X_{i(1)} X_{i(2)} & \ldots X_{i(k)}\end{array}\right]$

$$
W_{i}=\left[\begin{array}{ll}
W_{i 1} W_{i 2} & \ldots W_{i k}
\end{array}\right]^{T}
$$

Hence $\sum_{j=1}^{k} W_{i j} X_{i(j)}=V_{i} W_{i}$

Details

Define $V_{i}=\left[\begin{array}{ll}X_{i(1)} X_{i(2)} & \ldots X_{i(k)}\end{array}\right]$

$$
W_{i}=\left[\begin{array}{ll}
W_{i 1} W_{i 2} & \ldots W_{i k}
\end{array}\right]^{T}
$$

Hence $\sum_{j=1}^{k} W_{i j} X_{i(j)}=V_{i} W_{i}$
So the objective function now can be written as :

$$
\left|X_{i}-V_{i} W_{i}\right|^{2}
$$

Details

Define $V_{i}=\left[\begin{array}{ll}X_{i(1)} X_{i(2)} & \ldots X_{i(k)}\end{array}\right]$

$$
W_{i}=\left[\begin{array}{lll}
W_{i 1} W_{i 2} & \ldots & W_{i k}
\end{array}\right]^{T}
$$

Hence $\quad \sum_{j=1}^{k} W_{i j} X_{i(j)}=V_{i} W_{i}$
So the objective function now can be written as :

$$
\left|X_{i}-V_{i} W_{i}\right|^{2}
$$

Now construct a matrix

$$
\left[\begin{array}{lll}
X_{i} & X_{i} & \ldots X_{i}
\end{array}\right]
$$

Details

Define $V_{i}=\left[\begin{array}{ll}X_{i(1)} X_{i(2)} & \ldots X_{i(k)}\end{array}\right]$

$$
W_{i}=\left[\begin{array}{ll}
W_{i 1} W_{i 2} & \ldots W_{i k}
\end{array}\right]^{T}
$$

Hence $\quad \sum_{j=1}^{k} W_{i j} X_{i(j)}=V_{i} W_{i}$
So the objective function now can be written as :

$$
\left|X_{i}-V_{i} W_{i}\right|^{2}
$$

Now construct a matrix

$$
\left[\begin{array}{lll}
X_{i} & X_{i} & \ldots
\end{array} X_{i}\right]
$$

And write

$$
\left[\begin{array}{ll}
X_{i} & X_{i} \ldots X_{i}
\end{array}\right]=X_{i} e^{T} \text { where } e^{T}=[1, \ldots ., 1]_{1 * k}
$$

Details

Note that $\mathrm{X}_{i}=\mathrm{X}_{\mathrm{i}} \mathrm{e}^{\mathrm{T}} \mathrm{W}_{\mathrm{i}} \quad$ Hence, write the objective function:

$$
\left|X_{i} e^{T} W_{i}-V_{i} W_{i}\right|^{2}
$$

Details

Note that $\mathrm{X}_{i}=\mathrm{X}_{\mathrm{i}} \mathrm{e}^{\mathrm{T}} \mathrm{W}_{\mathrm{i}} \quad$ Hence, write the objective function:

$$
\left|X_{i} e^{T} W_{i}-V_{i} W_{i}\right|^{2}=\left|\left(X_{i} e^{T}-V_{i}\right) W_{i}\right|^{2}
$$

Details

Note that $\mathrm{X}_{i}=\mathrm{X}_{\mathrm{i}} \mathrm{e}^{\mathrm{T}} \mathrm{W}_{\mathrm{i}} \quad$ Hence, write the objective function:

$$
\begin{aligned}
& \left|X_{i} e^{T} W_{i}-V_{i} W_{i}\right|^{2}=\left|\left(X_{i} e^{T}-V_{i}\right) W_{i}\right|^{2} \\
= & W_{i}^{T}\left(X_{i} e^{T}-V_{i}\right)^{\mathrm{T}} *\left(X_{i} e^{T}-V_{i}\right) W_{i}
\end{aligned}
$$

Details

Note that $\mathrm{X}_{i}=\mathrm{X}_{\mathrm{i}} \mathrm{e}^{\mathrm{T}} \mathrm{W}_{\mathrm{i}} \quad$ Hence, write the objective function:

$$
\begin{aligned}
& \left|X_{i} e^{T} W_{i}-V_{i} W_{i}\right|^{2}=\left|\left(X_{i} e^{T}-V_{i}\right) W_{i}\right|^{2} \\
= & W_{i}^{T}\left(X_{i} e^{T}-V_{i}\right)^{\mathrm{T}} *\left(X_{i} e^{T}-V_{i}\right) W_{i}
\end{aligned}
$$

Define $\quad G:=\left(X_{i} e^{T}-V_{i}\right)^{\mathrm{T}}\left(X_{i} e^{T}-V_{i}\right)$

Details

Note that $\mathrm{X}_{i}=\mathrm{X}_{\mathrm{i}} \mathrm{e}^{\mathrm{T}} \mathrm{W}_{\mathrm{i}} \quad$ Hence, write the objective function:

$$
\begin{aligned}
& \left|X_{i} e^{T} W_{i}-V_{i} W_{i}\right|^{2}=\left|\left(X_{i} e^{T}-V_{i}\right) W_{i}\right|^{2} \\
= & W_{i}^{T}\left(X_{i} e^{T}-V_{i}\right)^{\mathrm{T}} *\left(X_{i} e^{T}-V_{i}\right) W_{i}
\end{aligned}
$$

Define $\quad G:=\left(X_{i} e^{T}-V_{i}\right)^{\mathrm{T}}\left(X_{i} e^{T}-V_{i}\right)$
The matrix G is called the Gram matrix

Details

Hence, write the objective function:

$$
\begin{aligned}
& \min \sum_{i} W_{i}^{T} G \mathrm{~W}_{\mathrm{i}} \\
& \text { Subject to } \quad \sum_{j=1}^{k} W_{i j}=1
\end{aligned}
$$

This is a well-known optimization problem and it can be solved using least square methods

LLE and its variation in Sklearn

MDS is implemented in Sklearn

Part II : Spectral Embedding

Spectral Embedding :example

Image source: sklearn example

- The spectral embedding can unfold the nonlinear structures in a data in a highdimensional feature space so that they become much easier to handle and understand.

Spectral Embedding :example

Image source: sklearn example

Spectral Embedding :example

Image source: sklearn example

Consider the digit dataset. This dataset can be thought of as a high-dimensional data with $d=64$.

Spectral Embedding :example

Image source: sklearn example

Consider the digit dataset. This dataset can be thought of as a high-dimensional data with $d=64$.
So every image can be thought of as a vector $x=\left[x_{1}, \ldots, x_{64}\right]$

Image source: sklearn example

Consider the digit dataset. This dataset can be thought of as a high-dimensional data with $d=64$.
So every image can be thought of as a vector $x=\left[x_{1}, \ldots, x_{64}\right]$
Spectral embedding assigns to the point x new coordinates $w=\left[w_{1}, \ldots, w_{k}\right]$ where $k \leq 64$. Usually we choose $d \ll k$. In the example above we choose $k=2$.

Image source: sklearn example

Consider the digit dataset. This dataset can be thought of as a high-dimensional data with $d=64$.
So every image can be thought of as a vector $x=\left[x_{1}, \ldots, x_{64}\right]$
Spectral embedding assigns to the point x new coordinates $w=\left[w_{1}, \ldots, w_{k}\right]$ where $k \leq 64$. Usually we choose $d \ll k$. In the example above we choose $k=2$.

But how exactly do we construct this new vector w ?

- Construct a similarity graph phase : A similarity graph for the data X is chosen from the many available neighborhood graphs we studied in earlier lectures.
- The spectral embedding phase :In this step we use the eigenvectors of the Laplacian of the similarity graph to construct new coordinates.

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $L(G)$.

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $L(G)$.
- Compute top k eigenvectors of L and place them as columns in a matrix V

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $\mathrm{L}(\mathrm{G})$.
- Compute top k eigenvectors of L and place them as columns in a matrix V

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $\mathrm{L}(\mathrm{G})$.
- Compute top k eigenvectors of L and place them as columns in a matrix V
-Form W from V by normalizing the rows of W (making every row a unit vector).

$$
v_{i j}=\frac{u_{i j}}{\left(\sum_{l=1}^{k} u_{i l}^{2}\right)^{2}}
$$

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $L(G)$.
- Compute top k eigenvectors of L and place them as columns in a matrix V
-Form W from V by normalizing the rows of W (making every row a unit vector).
-Each row w_{i} in the matrix W is, by definition, the spectral embedding of the point x_{i} from the original data

Spectral Embedding :more examples

Image source: sklearn example

In general the results of spectral embedding can better reveal or exaggerate useful underlying structures in the input data.

Spectral Embedding :more examples

Image source: sklearn example

In general the results of spectral embedding can better reveal or exaggerate useful underlying structures in the input data.

Spectral embedding usually put the points that are highly similar closer to each other and the points that are dissimilar far away from each other

$x=[x 1, x 2, x 3]$
spectral embedding

$w=[w 1, w 2]$

Image source: sklearn example

Spectral Embedding :graphs

We can use spectral embedding to give an embedding for a graph.

Image source:
networks example

