
Spectral Embedding and Locally Linear Embedding

MUSTAFA HAJIJ



Manifolds 

For every point p on the surface

there exists a small disk

that is mapped via a map f to the 

unit disk in the plane.

Mathematically, a manifold is a space that looks locally like a patch. The dimension of this patch is 
called the dimension of the manifold.

Surfaces are examples of manifolds. In particular,

surfaces are 2-manifolds.
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Locally linear embedding

PCA and MDS, do not give good results in nonlinear dimensionality reduction 
problems.

LLE recovers the global data by collecting local information surrounding each point 
in the data and then stitch these information together

Locally linear embedding does not require the computation of the pair-wise distance matrix of 
the data such as ISOMAP and MDS.
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LLE

Image source, original paper 

http://www.robots.ox.ac.uk/~az/lectures/ml/lle.pdf


Basic idea 

Here we fix the weights 𝑊𝑖𝑗

while optimizing the coordinates 𝑌𝑖

Here we are given the points 𝑋𝑖 and 
we  are optimizing the weights 𝑊𝑖𝑗

We need to optimize two objective functions in LLE :

I-

II-
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Basic idea 

Steps :
1- Identify the k-NN graph

2-Compute Wij such that

Subject to the constrains :
(a) Wij=0 when Xj does not belong to the set of neighbors of Xi;

(b)  𝑗=1
𝑘 𝑊𝑖𝑗 = 1

is minimal 

3-Compute Yi such that is minimal 
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Details

Define 𝑉𝑖 = [𝑋𝑖(1)𝑋𝑖(2) …𝑋𝑖(𝑘)]

𝑊𝑖 = 𝑊𝑖1𝑊𝑖2 … 𝑊𝑖𝑘
𝑇

 

𝑗=1

𝑘

𝑊𝑖𝑗𝑋𝑖(𝑗) = 𝑉𝑖𝑊𝑖

|𝑋𝑖 − 𝑉𝑖𝑊𝑖  
2

So the objective function now can be written as : 

Hence 

Now construct a matrix 

𝑋𝑖 𝑋𝑖 … 𝑋𝑖

And write 

𝑋𝑖 𝑋𝑖 …𝑋𝑖 =𝑋𝑖𝑒
𝑇 𝑒𝑇 = 1, … . , 1 1∗𝑘where
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Note that X𝑖 = Xie
TWi

𝑋𝑖𝑒
𝑇𝑊𝑖 − 𝑉𝑖𝑊𝑖

2 = (𝑋𝑖𝑒
𝑇 − 𝑉𝑖)𝑊𝑖

2

𝐺: = 𝑊𝑖
𝑇(𝑋𝑖𝑒

𝑇 − 𝑉𝑖)
T(𝑋𝑖𝑒

𝑇 − 𝑉𝑖)𝑊𝑖

= 𝑊𝑖
𝑇 (𝑋𝑖𝑒

𝑇 − 𝑉𝑖)
T

= (𝑋𝑖 𝑒𝑇 − 𝑉𝑖)𝑊𝑖

Define

Hence, write the objective function:

𝑇ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝐺 is called the Gram matrix
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Hence, write the objective function:

 

𝑗=1

𝑘

𝑊𝑖𝑗 = 1

𝑚𝑖𝑛  

𝑖

𝑊𝑖
𝑇𝐺Wi

Subject to

This is a well-known optimization problem and it can be solved using 
least square methods



LLE and its variation in Sklearn

MDS is implemented in Sklearn

Example 

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html#sphx-glr-auto-examples-manifold-plot-compare-methods-py


Part II : Spectral Embedding



• The spectral embedding can unfold the nonlinear structures in a data in a high-

dimensional feature space so that they become much easier to handle and understand.

Image source: sklearn

example

spectral embedding

Spectral Embedding :example

http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html


Consider the digit dataset. This dataset can be thought of as a high-dimensional data with 𝑑 = 64.

So every image can be thought of as a vector 𝑥 = [𝑥1, … , 𝑥64]

Spectral embedding assigns to the point x new coordinates 𝑤 = [𝑤1, … , 𝑤𝑘] where 𝑘 ≤ 64. Usually we choose 𝑑 << 𝑘.
In the example above we choose 𝑘 = 2.

But how exactly do we construct this new vector 𝑤 ?
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• Construct a similarity graph phase : A similarity graph for the data 

X is chosen from the many available neighborhood graphs we 

studied in earlier lectures.

• The spectral embedding phase :In this step we use the eigenvectors 

of the Laplacian of the similarity graph to construct new 

coordinates.

Spectral Embedding : general steps



•Construct a similarity graph G=G(X) of the data. This can be the k-NN graph for 

instance.

•Compute the Laplacian of the graph L(G).

•Compute top k eigenvectors of L and place them as columns in a matrix V

•Form W from V by normalizing the rows of W (making every row a unit vector).

Each row wi in the matrix W is, by definition, the spectral embedding of the point 

xi from the original data.

Input : a data set X consists of a points in 𝑅𝑑. The number of dimensions 𝑘 ≤ 𝑑
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example

spectral embedding

Spectral Embedding :more examples

x=[x1,x2,x3] w=[w1,w2]

In general the results of spectral embedding can better reveal or exaggerate useful underlying 

structures in the input data.

http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
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x=[x1,x2,x3] w=[w1,w2]

In general the results of spectral embedding can better reveal or exaggerate useful underlying 

structures in the input data.

Spectral embedding usually put the points that are highly similar closer to each other and the points that 

are dissimilar far away from each other 

http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
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example

spectral embedding

Spectral Embedding :more examples

x=[x1,x2,x3] w=[w1,w2]

http://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html#sphx-glr-auto-examples-manifold-plot-compare-methods-py


Spectral Embedding :graphs

Image source: 

networks example

We can use spectral embedding to give an embedding for a graph.

https://networkx.github.io/documentation/latest/auto_examples/drawing/plot_spectral_grid.html

