
An Introduction to
Multidimensional Scaling and ISOMAP

MUSTAFA HAJIJ

MDS

Let D=[𝑑𝑖𝑗] be an 𝑁 × 𝑁 dissimalrity matrix.

In MDS, we want to find n vectors 𝑥1, … , 𝑥𝑁 𝑖𝑛 𝑅𝑑 such that ||𝑥𝑖 − 𝑥𝑗|| ≈ 𝑑𝑖𝑗

• Usually if we choose d to be large enough, we can construct the vectors 𝑥1, … , 𝑥𝑁 with
exact solutions : ||𝑥𝑖 − 𝑥𝑗|| = 𝑑𝑖𝑗.

• In this case the distance 𝑑 above is the usual Euclidean distance.

• There are cases where the matrix D is valid distance matrix, but still there exists no set of
vectors 𝑥1, … , 𝑥𝑁 in any 𝑅𝑑 with perfect ||𝑥𝑖 − 𝑥𝑗|| = 𝑑𝑖𝑗. Such a distance is called non-

Euclidean distance.

MDS

Let D=[𝑑𝑖𝑗] be an 𝑁 × 𝑁 dissimalrity matrix.

In MDS, we want to find n vectors 𝑥1, … , 𝑥𝑁 𝑖𝑛 𝑅𝑑 such that ||𝑥𝑖 − 𝑥𝑗|| ≈ 𝑑𝑖𝑗

• Usually if we choose d to be large enough, we can construct the vectors 𝑥1, … , 𝑥𝑁 with
exact solutions : ||𝑥𝑖 − 𝑥𝑗|| = 𝑑𝑖𝑗.

• In this case the distance 𝑑 above is the usual Euclidean distance.

• There are cases where the matrix D is valid distance matrix, but still there exists no set of
vectors 𝑥1, … , 𝑥𝑁 in any 𝑅𝑑 with perfect ||𝑥𝑖 − 𝑥𝑗|| = 𝑑𝑖𝑗. Such a distance is called non-

Euclidean distance.

MDS

Let D=[𝑑𝑖𝑗] be an 𝑁 × 𝑁 dissimalrity matrix.

In MDS, we want to find n vectors 𝑥1, … , 𝑥𝑁 𝑖𝑛 𝑅𝑑 such that ||𝑥𝑖 − 𝑥𝑗|| ≈ 𝑑𝑖𝑗

• Usually if we choose d to be large enough, we can construct the vectors 𝑥1, … , 𝑥𝑁 with
exact solutions : ||𝑥𝑖 − 𝑥𝑗|| = 𝑑𝑖𝑗.

• In this case the distance 𝑑 above is the usual Euclidean distance.

• There are cases where the matrix D is valid distance matrix, but still there exists no set of
vectors 𝑥1, … , 𝑥𝑁 in any 𝑅𝑑 with perfect ||𝑥𝑖 − 𝑥𝑗|| = 𝑑𝑖𝑗. Such a distance is called non-

Euclidean distance.

MDS

Let D=[𝑑𝑖𝑗] be an 𝑁 × 𝑁 dissimalrity matrix.

In MDS, we want to find n vectors 𝑥1, … , 𝑥𝑁 𝑖𝑛 𝑅𝑑 such that ||𝑥𝑖 − 𝑥𝑗|| ≈ 𝑑𝑖𝑗

• Usually if we choose d to be large enough, we can construct the vectors 𝑥1, … , 𝑥𝑁 with
exact solutions : ||𝑥𝑖 − 𝑥𝑗|| = 𝑑𝑖𝑗.

• In this case the distance 𝑑 above is the usual Euclidean distance.

• There are cases where the matrix D is valid distance matrix, but still there exists no set of
vectors 𝑥1, … , 𝑥𝑁 in any 𝑅𝑑 with perfect ||𝑥𝑖 − 𝑥𝑗|| = 𝑑𝑖𝑗. Such a distance is called non-

Euclidean distance.

Classical MDS Algorithm

1-Construct the matrix of squares of the distances 𝑃(2) = [𝑑𝑖𝑗
2].

2. Apply the double centering: B = −
1

2
𝐽𝑃(2)𝐽 where 𝐽 = 𝐼 −

1

𝑛
11′ , where N is

the number of elements.

3. Extract the largest d positive eigenvalues 𝜆1 . . . 𝜆𝑑 of 𝐵 and the corresponding
m eigenvectors 𝑒1 . . . 𝑒𝑑.

4. A d-dimensional MDS coordinates of n objects is derived from the coordinate

matrix 𝑋 = 𝐸𝑑Λd

1

2 , where 𝐸𝑑 is the matrix of d eigenvectors and Λ𝑑 is the

diagonal matrix of d eigenvalues of 𝐵, respectively

Classical MDS Algorithm

1-Construct the matrix of squares of the distances 𝑃(2) = [𝑑𝑖𝑗
2].

2. Apply the double centering: B = −
1

2
𝐽𝑃(2)𝐽 where 𝐽 = 𝐼 −

1

𝑛
11′ , where N is

the number of elements.

3. Extract the largest d positive eigenvalues 𝜆1 . . . 𝜆𝑑 of 𝐵 and the corresponding
m eigenvectors 𝑒1 . . . 𝑒𝑑.

4. A d-dimensional MDS coordinates of n objects is derived from the coordinate

matrix 𝑋 = 𝐸𝑑Λd

1

2 , where 𝐸𝑑 is the matrix of d eigenvectors and Λ𝑑 is the

diagonal matrix of d eigenvalues of 𝐵, respectively

Classical MDS Algorithm

1-Construct the matrix of squares of the distances 𝑃(2) = [𝑑𝑖𝑗
2].

2. Apply the double centering: B = −
1

2
𝐽𝑃(2)𝐽 where 𝐽 = 𝐼 −

1

𝑛
11′ , where N is

the number of elements.

3. Extract the largest d positive eigenvalues 𝜆1 . . . 𝜆𝑑 of 𝐵 and the corresponding
m eigenvectors 𝑒1 . . . 𝑒𝑑.

4. A d-dimensional MDS coordinates of n objects is derived from the coordinate

matrix 𝑋 = 𝐸𝑑Λd

1

2 , where 𝐸𝑑 is the matrix of d eigenvectors and Λ𝑑 is the

diagonal matrix of d eigenvalues of 𝐵, respectively

Classical MDS Algorithm

1-Construct the matrix of squares of the distances 𝑃(2) = [𝑑𝑖𝑗
2].

2. Apply the double centering: B = −
1

2
𝐽𝑃(2)𝐽 where 𝐽 = 𝐼 −

1

𝑛
11′ , where N is

the number of elements.

3. Extract the largest d positive eigenvalues 𝜆1 . . . 𝜆𝑑 of 𝐵 and the corresponding
m eigenvectors 𝑒1 . . . 𝑒𝑑.

4. A d-dimensional MDS coordinates of n objects is derived from the coordinate

matrix 𝑋 = 𝐸𝑑Λd

1

2 , where 𝐸𝑑 is the matrix of d eigenvectors and Λ𝑑 is the

diagonal matrix of d eigenvalues of 𝐵, respectively

Example

D=

Coordinates of first point

Start with a distance matrix D

See this for more details

https://homepages.uni-tuebingen.de/florian.wickelmaier/pubs/Wickelmaier2003SQRU.pdf

Example

D=

Coordinates of first point

Take the square the elements of D

Example

D=

Coordinates of first point

Construct the J matrix

Example

D=

Coordinates of first point

Construct double centering matrix

Example

D=

Coordinates of first point

Solve the largest 2 eigenvalues and eigenvector of B

Example

D=

Use that to construct the final MDS coordinates.

Example

D=

Coordinates of first point

Use that to construct the final MDS coordinates.

Stress Majorization

In the classical MDS algorithm the cost function that we are trying to optimize is
called the stress function and it is given by :

In this function we try to find 𝑥1, … , 𝑥𝑁 in a certain dimension d such that
Stress(𝑥1, … , 𝑥𝑁) is as small as possible

Stress Majorization

The stress function has a more general form as :

Here wij weight between a pair of points (i,j) that represents the confidence in in the similarity
between points (i,j) .

the given distance between the points i,j

Stress Majorization

“Pressing” the data into 2 dimensions enables us to visualize the data. However, that comes with a price :
high stress function value (which correlates wit distorted representation)

Mathematically non-zero stress

values may occur only for only

one reason: dimensionality of the

chosen MDS projection is too low.

MDS in Sklearn

MDS is implemented in Sklearn

Example

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html#sphx-glr-auto-examples-manifold-plot-compare-methods-py

MDS in Sklearn

MDS is implemented in Sklearn

Example

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_manifold_sphere.html#sphx-glr-auto-examples-manifold-plot-manifold-sphere-py

MDS in Sklearn

MDS is implemented in Sklearn

Example

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py

MDS in Sklearn

MDS is implemented in Sklearn

Example

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_mds.html#sphx-glr-auto-examples-manifold-plot-mds-py

Application

Measuring distance between two persistence diagrams

data

data1 data2

Persistence diagrams

Distance between persistence diagrams

PD(data1) PD(data2)

Distance between PD(data1) and PD(data2)

Bottleneck distance between two persistent diagrams

• Given two persistence diagrams X and Y, let η be a bijection between points in the diagram. The following two distances
are commonly used in the context of PH to measure the distance between two persistence diagrams:

Bottleneck distance between two persistent diagrams

MDS plot of the matrix M with labels corresponding
to each class.

Matrix M describes the
pair-wise distance
between the persistence
diagrams of each data
element

Input data

Remarks

• The axes obtained when drawing the MDS coordinates are , in themselves, meaningless.

• The orientation of the result MDS “picture” is arbitrary.

• When we obtain MDS coordinates that has non-zero stress, we should remember that the distances

among the resulting items are distorted representations of the relationships given by the input data. This

distortion is greater when the stress is greater.

• That being said, we, in general, can rely on the larger distances as being more accurate than smaller

distances.

Remarks

• The axes obtained when drawing the MDS coordinates are , in themselves, meaningless.

• The orientation of the result MDS “picture” is arbitrary.

• When we obtain MDS coordinates that has non-zero stress, we should remember that the distances

among the resulting items are distorted representations of the relationships given by the input data. This

distortion is greater when the stress is greater.

• That being said, we, in general, can rely on the larger distances as being more accurate than smaller

distances.

Remarks

• The axes obtained when drawing the MDS coordinates are , in themselves, meaningless.

• The orientation of the result MDS “picture” is arbitrary.

• When we obtain MDS coordinates that have non-zero stress, we should remember that the distances

among the resulting items are distorted representations of the relationships given by the input data. This

distortion is greater when the stress is greater.

• That being said, we, in general, can rely on the larger distances as being more accurate than smaller

distances.

Non-Matric MDS

• Sometimes, there is no defined metric on points and all we are given is a similarity measure between
the points.

Non-Matric MDS

• Sometimes, there is no defined metric on points and all we are given is a similarity measure between
the points.

The main idea in non-metric MDS :

• The actual values given to us are not that meaningful
• Ranking among different points is important

• Non-metric MDS finds a low-dimensional representation, which respects the ranking of
distances as much as possible

Non-Matric MDS

• Recall that in MDS we seek to find an optimal configuration 𝑥𝑖 that 𝑔𝑖𝑣𝑒𝑠 𝑑𝑖𝑗 ≈ 𝑑𝑖𝑗
′ = | 𝑥𝑖 − 𝑥𝑗 |

as close as possible.

• Relaxing 𝑑𝑖𝑗 ≈ 𝑑′ 𝑖𝑗 from MDS by allowing𝑑′ 𝑖𝑗 ≈ 𝑓 (𝑑𝑖𝑗), for some monotone function 𝑓

Monotonic means : 𝑑𝑖𝑗 < 𝑑𝑘𝑙 ⇔ 𝑓 (𝑑𝑖𝑗) ≤ 𝑓 (𝑑𝑘𝑙)

Non-Matric MDS

• Recall that in MDS we seek to find an optimal configuration 𝑥𝑖 that 𝑔𝑖𝑣𝑒𝑠 𝑑𝑖𝑗 ≈ 𝑑𝑖𝑗
′ = | 𝑥𝑖 − 𝑥𝑗 |

as close as possible.

• Relaxing 𝑑𝑖𝑗 ≈ 𝑑′ 𝑖𝑗 from MDS by allowing𝑑′ 𝑖𝑗 ≈ 𝑓 (𝑑𝑖𝑗), for some monotone function 𝑓

Monotonic means : 𝑑𝑖𝑗 < 𝑑𝑘𝑙 ⇔ 𝑓 (𝑑𝑖𝑗) ≤ 𝑓 (𝑑𝑘𝑙)

Non-Matric MDS

• Recall that in MDS we seek to find an optimal configuration 𝑥𝑖 that 𝑔𝑖𝑣𝑒𝑠 𝑑𝑖𝑗 ≈ 𝑑𝑖𝑗
′ = | 𝑥𝑖 − 𝑥𝑗 |

as close as possible.

• Relaxing 𝑑𝑖𝑗 ≈ 𝑑′ 𝑖𝑗 from MDS by allowing𝑑′ 𝑖𝑗 ≈ 𝑓 (𝑑𝑖𝑗), for some monotone function 𝑓

Monotonic means : 𝑑𝑖𝑗 < 𝑑𝑘𝑙 ⇔ 𝑓 (𝑑𝑖𝑗) ≤ 𝑓 (𝑑𝑘𝑙)

Given a dimension d, non-metric MDS seeks to find an optimal configuration 𝑋 ⊂ 𝑅𝑑 that gives
𝑓 (𝑑𝑖𝑗) ≈ 𝑑ˆ 𝑖𝑗 = ||𝑥𝑖 − 𝑥𝑗|| as close as possible.

• 𝑓 (𝑑𝑖𝑗) = 𝑑∗𝑖𝑗 is only required to preserve the order of 𝑑𝑖𝑗 ,

i.e., 𝑑𝑖𝑗 < 𝑑𝑘𝑙 ⇔ 𝑓 (𝑑𝑖𝑗) ≤ 𝑓 (𝑑𝑘𝑙) ⇔ 𝑑𝑖𝑗
∗ ≤ 𝑑𝑘𝑙

∗

Non-Matric MDS

The stress function for non-metric MDS is given by :

Non-metric MDS optimizes over both position of the points of points and f

Non-Matric MDS

The stress function for non-metric MDS is given by :

Non-metric MDS optimizes over both position of the points of points and f

Solved numerically using (isotonic regression); we usually use classical MDS as starting initial position.

https://en.wikipedia.org/wiki/Isotonic_regression

Non-Matric MDS

The stress function for non-metric MDS is given by :

Non-metric MDS optimizes over both position of the points of points and f

Solved numerically using (isotonic regression); we usually use classical MDS as starting initial position.

Example

https://en.wikipedia.org/wiki/Isotonic_regression
http://scikit-learn.org/stable/auto_examples/manifold/plot_mds.html#sphx-glr-auto-examples-manifold-plot-mds-py

ISOMAP

• Isomap extends MDS by utilizing geodesic distances induced by some neighborhood graph.
• There is no essential difference between MDS and ISOMAP algorithm once we find the distance

matrix induced by the neighborhood graph.

So the steps for ISOMAP on a given data :
1- Construct the neighborhood graph of the data X using one of the neighborhood graphs we
studied earlier in the course
2- Use Dijekstra algorithm to find the distance between nodes on the graph
3- Apply MDS on the distance matrix above and extract the coordinates with the desired
dimension

ISOMAP

• Isomap extends MDS by utilizing geodesic distances induced by some neighborhood graph.
• There is no essential difference between MDS and ISOMAP algorithm once we find the distance

matrix induced by the neighborhood graph.

So the steps for ISOMAP on a given data :
1- Construct the neighborhood graph of the data X using one of the neighborhood graphs we
studied earlier in the course
2- Use Dijekstra algorithm to find the distance between nodes on the graph
3- Apply MDS on the distance matrix above and extract the coordinates with the desired
dimension

ISOMAP

• Isomap extends MDS by utilizing geodesic distances induced by some neighborhood graph.
• There is no essential difference between MDS and ISOMAP algorithm once we find the distance

matrix induced by the neighborhood graph.

So the steps for ISOMAP on a given data :
1- Construct the neighborhood graph of the data X using one of the neighborhood graphs we
studied earlier in the course
2- Use the Dijekstra algorithm or the Floyd–Warshall algorithm to find the distance between nodes
on the graph
3- Apply MDS on the distance matrix above and extract the coordinates with the desired
dimension

ISOMAP

• Isomap extends MDS by utilizing geodesic distances induced by some neighborhood graph.
• There is no essential difference between MDS and ISOMAP algorithm once we find the distance

matrix induced by the neighborhood graph.

So the steps for ISOMAP on a given data :
1- Construct the neighborhood graph of the data X using one of the neighborhood graphs we
studied earlier in the course
2- Use the Dijekstra algorithm or the Floyd–Warshall algorithm to find the distance between nodes
on the graph
3- Apply MDS on the distance matrix above and extract the coordinates with the desired
dimension

ISOMAP

A- Euclidian distance might not represent the actual distance between the points in the data.
B- We can construct the neighborhood graph of the data and then compute the geodesic distance between the points
of the graph
C- Embedding the space we obtained in B into the plane.

Figure reference

http://web.mit.edu/cocosci/Papers/sci_reprint.pdf

Appendix : Floyd–Warshall algorithm

let dist be a |V| × |V| array of minimum distances

initialized to infinity

for each edge (u,v)

dist[u][v] ← w(u,v) // the weight of the edge (u,v)

for each vertex v

dist[v][v] ← 0

for k from 1 to |V|

for i from 1 to |V|

for j from 1 to |V|

if dist[i][j] > dist[i][k] + dist[k][j]

dist[i][j] ← dist[i][k] + dist[k][j]

end if

Floyd algorithm is good to use when we want to compute the distance matrix on a dense graph.
When the graph G is sparse, Dijekstra algorithm is a better choice.

