An Introduction to
Multidimensional Scaling and ISOMAP

MUSTAFA HAJIJ

MDS

Let D=[d;;] be an N X N dissimalrity matrix.

In MDS, we want to find n vectors x4, ..., xy in R® such that | |x; — xj|| = di;

MDS

Let D=[d;;] be an N X N dissimalrity matrix.

In MDS, we want to find n vectors x4, ..., xy in R® such that | |x; — xj|| = di;

e Usually if we choose d to be large enough, we can construct the vectors x4, ..., x with
exact solutions : | |x; — x;|| = d;;.

MDS

Let D=[d;;] be an N X N dissimalrity matrix.

In MDS, we want to find n vectors x4, ..., xy in R® such that | |x; — xj|| = di;

e Usually if we choose d to be large enough, we can construct the vectors x4, ..., x with
exact solutions : | |x; — x;|| = d;;.

* |n this case the distance d above is the usual Euclidean distance.

MDS

Let D=[d;;] be an N X N dissimalrity matrix.

In MDS, we want to find n vectors x4, ..., xy in R® such that | |x; — xj|| = di;

e Usually if we choose d to be large enough, we can construct the vectors x4, ..., x with
exact solutions : | |x; — x;|| = d;;.

* |n this case the distance d above is the usual Euclidean distance.

* There are cases where the matrix D is valid distance matrix, but still there exists no set of
vectors xq, ..., Xy in any R with perfect | |x; — xj|| = d;j. Such a distance is called non-

Euclidean distance.

Classical MDS Algorithm

1-Construct the matrix of squares of the distances P(?) = [dl-zj].

Classical MDS Algorithm

1-Construct the matrix of squares of the distances P(?) = [dl-zj].

2. Apply the double centering: B = ——]P(z)] where] = I — 111 , where N is
the number of elements. "

Classical MDS Algorithm

1-Construct the matrix of squares of the distances P(?) = [dl-zj].

2. Apply the double centering: B = ——]P(z)] where] = [—— 11’ , where N is
the number of elements.

3. Extract the largest d positive eigenvalues A, ... 4,4 of B and the corresponding
m eigenvectors e; ... ée4.

Classical MDS Algorithm

1-Construct the matrix of squares of the distances P(?) = [dl-zj].

2. Apply the double centering: B = ——]P(z)] where] = [—— 11’ , where N is
the number of elements.

3. Extract the largest d positive eigenvalues A, ... 4,4 of B and the corresponding
m eigenvectors e ... e4.

4. A d-dimensional MDS coordinates of n objects is derived from the coordinate
1

matrix X = E A% , where E; is the matrix of d eigenvectors and A is the
diagonal matrix of d eigenvalues of B, respectively

Example

Start with a distance matrix D

133

82 133

22

60

0 111

111

0

See this for more details

https://homepages.uni-tuebingen.de/florian.wickelmaier/pubs/Wickelmaier2003SQRU.pdf

Example

Take the square the elements of D

0 93
93 0
82 52

133 60

82 133

22

60

0 111

111

0

q

P2 —

0 8649
8649 0
6724 2704

| 17689 3600

6724 17689

2704

3600

0 12321

12321

0

Example Construct the J matrix

0 93 82 133 [0 8649 6724 17689 |
93 0 52 60 ,
D= r @ _ | 8649 0 2704 3600
82 52 0 111 — P 6724 2704 0 12321
133 60 111 0 | 17689 3600 12321 0|
(1.0 0 0| ‘111 1] [07 —025 —025 —0.25
0100 11 1 1 —0.25 0.75 —0.25 —0.25
J = —[]'.25)(=
0010 11 1 1 —0.25 —0.25 0.75 —0.25
0001 111 1] |-025 —025 —025 0.75

Example

0 93 82 133

e % 0 52 60
T 82 52 0 111 T
133 60 111 0
(100 0] 1111
0O 1 00 1 1 1 1
J = —0.25 x
0010 1 111
0001 1 111
5035.0625 —1553.0625
B_ —%JP@}J _ —1503.0?25 o[}?.iSlZo
258.9375 5.3125
| —3740.9375 1039.9375

Construct double centering matrix

0 8649

8649 0
6724 2704

| 17689 3600

0.75 —0.25
—-0.25 0.75
—0.25 —0.25
| —0.25 —0.25

258.9375 —3740.938
5.3125 1039.938
2206.8125 —2471.062
—2471.0625 5172.062

6724 17689
2704 3600
0 12321
12321 0
—0.25 —0.25
—0.25 —0.25
0.75 —0.25
—0.25 0.75

Example

0 93 82 133
Do 9B 0 52 60
T 82 52 0 111 T
133 60 111 0
1000 (1111
0100 1111
J = —0.25 x
0010 1 111
00 01 1 111
[5035.0625 —1553.0625
B_ _igpy_ | 15530625 507.8125
2 258.9375 5.3125
| —3740.9375 1039.9375
—0.637 —0.586
, o1p . _ 0.187 B 0.214
A= 9724168, A, = 3160.986, er=| " |, ez = 0706
0.704 —0.334

Solve the largest 2 eigenvalues and eigenvector of B

0 8649
8649 0
6724 2704

0.75
—0.25
—0.25

| —0.25

258.9375
5.3125
2206.8125
—2471.0625

| 17689 3600

—0.25

0.75
—0.25
—0.25

—3740.938 |

1039.938

—2471.062

5172.062 |

6724 17689 |
2704 3600
0 12321
12321 0 |
—0.25 —0.25 |
—0.25 —0.25
0.75 —0.25
—0.25 0.75 |

Use that to construct the final MDS coordinates.

Example

82 133 i

i 0 sy o 0 8649 6724 17689 |
52 6 ,
D= r p@ _ | 8649 0 2704 3600
82 52 0 111) 6724 2704 0 12321
13360 110 | 17689 3600 12321 0
(100 0| 111 1] [07 —025 —025 —025]
0100 1 111 —0.25 0.75 —0.25 —0.25
J = —(0.25 x =
0010 1 111 —0.25 —0.25 0.75 —0.25
|00 0 1] 111 1| | —0.25 —025 —0.25 0.75 |
[5035.0625 —1553.0625 258.9375 —3740.938 |
B_ _igpy_ | 15530625 507.8125 53125 1039.938
2 258.9375 5.3125 2206.8125 —2471.062
| —3740.9375 1039.9375 —2471.0625 5172.062 |
0,637 0.586 [—0.637 —[}.586-|
- | o0as7 | 0214 | 0187 0214 | | VOT24.168 0|
Ar= 9724168, A; = 3160.986, ex = o0s 1227 | (706 =P X- ~0.253 0.706 [0 /3160986 |
0.704 —0.334 0.704 —0.334

[

|

—62.831
18.403
—24.960
69.388

—32.97448
12.02697
39.71091

—18.76340

1

|

Example

Use that to construct the final MDS coordinates.

0 93 82 133 0 8649 6724 17689 |
93 0 52 60 , N
D=] p@ _ | 8649 0 2704 3600
82 052 0 1l e 6724 2704 0 12321
133 60 111 0 | 17689 3600 12321 0|
1000] ‘111 1] [07 —025 —025 —0.25
0O 1 0 0 1 1 1 1 —0.25 0.75 —0.25 —0.25
J = — (.25 x =
0 0 1 0 1 1 1 1 —0.25 —0.25 0.75 —0.25
0 0 0 1 1 1 1 1 —0.25 —0.25 —0.25 0.75
[5035.0625 —1553.0625 258.9375 —3740.938 |
2 258.9375 5.3125 2206.8125 —2471.062
| —3740.9375 1039.9375 —2471.0625 5172.062
—0.637 —0.586 [—0.637 —[}.586-| [—62.831 —32.97448]
‘ o 0.187 0.214 0187 0214 V9724168 0] | 18403 12.02697
A = 9724168, A, = 3160.986, ex = | o0 |02 = [(06 > X= ~0.253 0.706 [0 /3160986 | | —24.960 39.71091
0.704 —0.334 0.704 —0.334 69.388 —18.76340

Stress Majorization

In the classical MDS algorithm the cost function that we are trying to optimize is
called the stress function and itis given by :

1/2
2
Stressp (ml,mg, ‘e ,IN) = (Z (dﬁj - ||$.,, o ‘TJH))

In this function we try to find x4, ..., X,y in a certain dimension d such that
Stress(xq, ..., Xy) is as small as possible

Stress Majorization

The stress function has a more general form as :

o(X) = > wi(dij(X) — 8j)°

1<j<n

Here wij weight between a pair of points (i,j) that represents the confidence in in the similarity
between points (i,j) .

di; the given distance between the points i,

Stress Majorization

“Pressing’ the data into 2 dimensions enables us to visualize the data. However, that comes with a price :
high stress function value (which correlates wit distorted representation)

Mathematically non-zero stress
stress values may occur only for only
one reason: dimensionality of the
chosen MDS projection is too low.

number of
dimensions

MDS in Sklearn

MDS is implemented in Sklearn

LLE (0.23 sec)

LTSA (0.37 sec)

Hessian LLE (0.52 sec)

Modified LLE (0.43 sec)

Isomap (0.46 sec)

MDS (2.1 sec)

SpectralEmbedding (0.22 sec)

t-SNE (17 sec)

X,

".
M

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html#sphx-glr-auto-examples-manifold-plot-compare-methods-py

MDS in Sklearn

MDS is implemented in Sklearn

LLE (0.17 sec)

LTSA (0.26 sec)

Hessian LLE (0.38 sec)

Modified LLE (0,32 sec)

. aJ ‘
R ’ \‘

Isomap (0.26 sec)

MDS (1 sec)

Spectral Embedading (0.17 sec)

t-SNE (11 sec)

Example

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_manifold_sphere.html#sphx-glr-auto-examples-manifold-plot-manifold-sphere-py

MDS in Sklearn

MDS is implemented in Sklearn

B = e o o o0 e e w5 By o) I o = sl ol L e
mli.uf411rw.iﬂ$1n.5nuﬁlli

= e e = el D e s D B o D T LD e
R e A e 5 £ e S 7 o i el W e ok A D U
bl JE Tl L RTRES Frh ol Rl ol e e] T
ol W e s e P B D A S U o T e S
pat deal alml el A=lu LTl s o R et o Lo
o gmall) el el S e D T N O T e T
o =N ey T O Y Ly 0= e g s o O Y e
R Tyt g £ el e i, 07 o B e B v s O D
A s i e el s s sl W O
et il o s e el W i e I S A ol S e e D
P e D O el O el i D e i o o T e
B T W il £ O L e 0 e O o ol g el Ly
=Y P By T T s e ol e e e e o0 ol el O L
O O oy 18 e B O e e ol Sl el
U AT T d OO IO O el o
E3 = o O 0w pld A A DO T S Sl
Ly == o Py e L s O sy i e e e o e 2O Ol
At adl PN el v W s O e ol el O i

A selection from the 64-dimensional digits dataset

Example

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py

MDS in Sklearn

MDS is implemented in Sklearn

@ True Position
@ MDS
® NMDS

‘/m ®
) Is >
—— - 7 @

|

| ¢

|

<«

Example

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_mds.html#sphx-glr-auto-examples-manifold-plot-mds-py

A RRE: AR
at =N DL E
aEeanoamMee
¢éeeeeO@ Qe
88888 ¢ ¢ ¢ 8
TN R A R R o

Measuring distance between two persistence diagrams

data
datal data2
 Z v v
H0.5 | 0.5
. 1.2 . 1.2
. 2.0 I 2.0
Persistence diagrams 3.3 E—— 5.0
e —
PD(datal) PD(data2)

N/

v

Distance between persistence diagrams Distance between PD(datal) and PD(data2)

Bottleneck distance between two persistent diagrams

* Given two persistence diagrams X and Y, let n be a bijection between points in the diagram. The following two distances
are commonly used in the context of PH to measure the distance between two persistence diagrams:

We(X,Y)= inf sup|x—7n(x)
N:X—=Y yex

HDC:I

1/q

W, (X,Y)=| mf X — 1
JXY)= | inf S [x =)

Bottleneck distance between two persistent diagrams

0.04

0.03 =

MDSCALE with M

q < 4 ¥

camel
cat
elephant
face
head
horse

L .ol 0,953 0 S0 NEL B 0 o 0 8 0 TR
S D FEA, = g, °
Yo X X 3 e L. X : ':
¢eeeee@eeee | "l N
806868688 ¢ ¢ 89 Fl | ’
T W 2 2 R v o girey e o |l .

4
N

-0.03

Matrix M descrlbes the -0.03 -U.f]Irz -I'I.UI]. I'Il U.I;}l l'l.ll'l2 ﬂ.EIH I'l.(llal 0.05
pair-wise distance

E——pD@tWeen the persistence ==

diagrams of each data
element

MDS plot of the matrix M with labels corresponding

Input data
P to each class.

Remarks

« The axes obtained when drawing the MDS coordinates are , in themselves, meaningless.

Remarks

« The axes obtained when drawing the MDS coordinates are , in themselves, meaningless.

» The orientation of the result MDS “picture” is arbitrary.

Remarks

« The axes obtained when drawing the MDS coordinates are , in themselves, meaningless.

» The orientation of the result MDS “picture” is arbitrary.

« When we obtain MDS coordinates that have non-zero stress, we should remember that the distances
among the resulting items are distorted representations of the relationships given by the input data. This
distortion is greater when the stress is greater.

« That being said, we, in general, can rely on the larger distances as being more accurate than smaller
distances.

Non-Matric MDS

 Sometimes, there is no defined metric on points and all we are given is a similarity measure between
the points.

Non-Matric MDS

Sometimes, there is no defined metric on points and all we are given is a similarity measure between
the points.

The main idea in non-metric MDS :

The actual values given to us are not that meaningful
* Ranking among different points is important

Non-metric MDS finds a low-dimensional representation, which respects the ranking of
distances as much as possible

Non-Matric MDS

* Recall that in MDS we seek to find an optimal configuration xi that gives d;; = dlfj = ||xl- — xj||
as close as possible.

Non-Matric MDS

* Recall that in MDS we seek to find an optimal configuration xi that gives d;; = dlfj = ||xl- — xj||
as close as possible.

* Relaxing dij ~ d'ij from MDS by allowingd’ ij =~ f (d;;), for some monotone function f

Monotonic means : d;; < dy; © f (dij) < f (dy)

Non-Matric MDS

* Recall that in MDS we seek to find an optimal configuration xi that gives d;; = dlfj = ||xl- — xj||
as close as possible.

* Relaxing dij ~ d'ij from MDS by allowingd’ ij =~ f (d;;), for some monotone function f

Monotonic means : d;; < dy; © f (dij) < f (dy)

Given a dimension d, non-metric MDS seeks to find an optimal configuration X < R% that gives
f(dij) = d"ij = [|x; — xj|| as close as possible.
e f (d;j) = dij isonly required to preserve the order of d;; ,

e, dij < dy © f(dy) < fdw) & dij < djy

Non-Matric MDS

The stress function for non-metric MDS is given by :

Stress = Z(JU — f(d,-j))2/ Z d,-?

i<j

Non-metric MDS optimizes over both position of the points of points and f

N =

Non-Matric MDS

The stress function for non-metric MDS is given by :

N =

Stress = | > _(dyj — f(dy))?/ > dZ

1<J
Non-metric MDS optimizes over both position of the points of points and f

Solved numerically using (isotonic regression); we usually use classical MDS as starting initial position.

https://en.wikipedia.org/wiki/Isotonic_regression

Non-Matric MDS

The stress function for non-metric MDS is given by :

N =

Stress = | > _(dyj — f(dy))?/ > dZ

1<J
Non-metric MDS optimizes over both position of the points of points and f

Solved numerically using (isotonic regression); we usually use classical MDS as starting initial position.

https://en.wikipedia.org/wiki/Isotonic_regression
http://scikit-learn.org/stable/auto_examples/manifold/plot_mds.html#sphx-glr-auto-examples-manifold-plot-mds-py

ISOMAP

* Isomap extends MDS by utilizing geodesic distances induced by some neighborhood graph.
* There is no essential difference between MDS and ISOMAP algorithm once we find the distance
matrix induced by the neighborhood graph.

ISOMAP

* Isomap extends MDS by utilizing geodesic distances induced by some neighborhood graph.
* There is no essential difference between MDS and ISOMAP algorithm once we find the distance
matrix induced by the neighborhood graph.

So the steps for ISOMAP on a given data :
1- Construct the neighborhood graph of the data X using one of the neighborhood graphs we
studied earlier in the course

ISOMAP

* Isomap extends MDS by utilizing geodesic distances induced by some neighborhood graph.
* There is no essential difference between MDS and ISOMAP algorithm once we find the distance
matrix induced by the neighborhood graph.

So the steps for ISOMAP on a given data :

1- Construct the neighborhood graph of the data X using one of the neighborhood graphs we
studied earlier in the course

2- Use the Dijekstra algorithm or the Floyd—Warshall algorithm to find the distance between nodes
on the graph

ISOMAP

* Isomap extends MDS by utilizing geodesic distances induced by some neighborhood graph.
* There is no essential difference between MDS and ISOMAP algorithm once we find the distance
matrix induced by the neighborhood graph.

So the steps for ISOMAP on a given data :

1- Construct the neighborhood graph of the data X using one of the neighborhood graphs we
studied earlier in the course

2- Use the Dijekstra algorithm or the Floyd—Warshall algorithm to find the distance between nodes
on the graph

3- Apply MDS on the distance matrix above and extract the coordinates with the desired
dimension

ISOMAP

A

A- Euclidian distance might not represent the actual distance between the points in the data.

B- We can construct the neighborhood graph of the data and then compute the geodesic distance between the points
of the graph

C- Embedding the space we obtained in B into the plane.

Figure reference

http://web.mit.edu/cocosci/Papers/sci_reprint.pdf

Appendix : Floyd—Warshall algorithm

let dist be a |V| x |V]| array of minimum distances
initialized to infinity

for each edge (u,v)

dist[u] [V] <« w(u,Vv) [/the weight of the edge (u,v)

for each vertex v

dist[V] [V] « O

for k from 1 to |V|

for i from 1 to |V|

for j from 1 to |V|
If dist[i] U] > dist[i] [k] + dist[k]U]
dist[i][jJ] « dist[i] [K] + dist[K] []]

end if

Floyd algorithm is good to use when we want to compute the distance matrix on a dense graph.
When the graph G is sparse, Dijekstra algorithm is a better choice.

