
Mustafa Hajij

An Introduction to
Topological Data Analysis

Motivation

The classical problem of fitting data set of point in R n using
linear regression

Motivation

The linear shape of the data is a fundamental assumption
underlying the linear regression method

The classical problem of fitting data set of point in R n using
linear regression

Motivation

The linear shape of the data is a fundamental assumption
underlying the linear regression method

Clustering algorithms assume that the data is clustered in a
certain way.

The classical problem of fitting data set of point in R n using
linear regression

Motivation

Understanding the shape of the data is a fundamental
assumption underlying the analytical method

Concept

Space

Concept

Topological space

Concept

Metric Space

Concept

Concept

Roughly speaking, topology of an object studies the way this object is

connected.

Topology studies the properties of shapes that do not change under

continuous deformations.

Motivation

Roughly speaking, topology of an object studies the way this object is

connected.

Topology studies the properties of shapes that do not change under

continuous deformations.

==

Motivation

Roughly speaking, topology of an object studies the way this object is

connected.

Topology studies the properties of shapes that do not change under

continuous deformations.

==

So topologically, the following objects are

equivalent because we can deform each one of

them contentiously without tearing into the other.

Motivation

Roughly speaking, topology of an object studies the way this object is

connected.

Topology studies the properties of shapes that do not change under

continuous deformations.

==

So topologically, the following objects are

equivalent because we can deform each one of

them contentiously without tearing into the other.

Motivation

=/=
However, the sphere cannot

be continuously deformed into

the torus. Hence the sphere

and the torus are topologically

district.

Roughly speaking, topology of an object studies the way this object is

connected.

Topology studies the properties of shapes that do not change under

continuous deformations.

==

So topologically, the following objects are

equivalent because we can deform each one of

them contentiously without tearing into the other.

Motivation

Topology makes these notions precise.

=/=
However, the sphere cannot

be continuously deformed into

the torus. Hence the sphere

and the torus are topologically

district.

Continuous functions

Which of the following functions is continuous ?

Continuous functions

Which of the following functions is continuous ?

Homeomorphism

Homeomorphism

Which of the following functions is homeomorphism? If not, which one of the three conditions is violated?

Homeomorphism

Homeomorphism-examples

How can we explain a topological space to a computer ?

How can we explain a topological space to a computer ?

How can we explain a topological space to a computer ?

How can we explain a topological space to a computer ?

Key Idea : we use simple building blocks (called simplices)

How can we explain a topological space to a computer ?

Key Idea : we use simple building blocks (called simplices)

to build more complicated shape.

How can we explain a topological space to a computer ?

Graphs representation: list of edges

[[0,1], [1,3],[1,4] [3,4], [3,2]]

• The vertices can be recovered from the edges.

• The order of the vertices is important only if the graph is directed.

Simplicial Complex-precise definition

Examples and non-examples

Examples and non-examples

Examples and non-examples

Examples and non-examples

Simplicial Complex

Approximation of the shape

Cover of a space

A cover of a space X is a collection of sets U whose union is the entire space

Cover of a space

A cover of a space X is a collection of sets U whose union is the entire space

Approximation of the shape

Covers can be used to obtain an approximation for the underlying data

Approximation of the shape

Covers can be used to obtain an approximation for the underlying data

Approximation of the shape

Nerve of a space

Covers can be used to obtain an approximation for the underlying data

Approximation of the shape

Key idea: every set is replaced by a node
every intersection is replaced by an edge
if we have intersection between three sets we replace them with a face and so on.

Mapper Construction

source

https://www.researchgate.net/profile/Facundo_Memoli/publication/221571174_Topological_Methods_for_the_Analysis_of_High_Dimensional_Data_Sets_and_3D_Object_Recognition/links/02bfe50fe76b396b8f000000/Topological-Methods-for-the-Analysis-of-High-Dimensional-Data-Sets-and-3D-Object-Recognition.pdf

Mapper Construction

source

https://www.researchgate.net/profile/Facundo_Memoli/publication/221571174_Topological_Methods_for_the_Analysis_of_High_Dimensional_Data_Sets_and_3D_Object_Recognition/links/02bfe50fe76b396b8f000000/Topological-Methods-for-the-Analysis-of-High-Dimensional-Data-Sets-and-3D-Object-Recognition.pdf

Mapper Construction

Mapper Construction

Mapper Construction

Mapper Example

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every
point in X.

𝑋

[0,1]

0

1

Mapper Example

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every
point in X.

𝑋
𝑋

[0,1]

0

1

Mapper Example

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every
point in X.

𝑋

[0,1]

0

1

Mapper Example

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every
point in X.

𝑋

[0,1]

0

1

Mapper Example

Mapper Example

Mapper Example

Mapper Example

The construction of Mapper on a 1d function

(a) A scalar function f : X −→ [a,b].

This gives a decomposition of the domain the domain X. The inverse image of A consists of two connected
components α1 and α2, and the inverse image of B consists of three connected components β1, β3 and β3.

The connected components are represented by the nodes in the Mapper construction.

an edge is inserted whenever two connected components overlap.

The construction of Mapper on a 1d function

(a) A scalar function f : X −→ [a,b].

(b) This gives a decomposition of the domain the domain X. The inverse image of A consists of two connected
components α1 and α2, and the inverse image of B consists of three connected components β1, β3 and β3.The connected components are represented by the nodes in the Mapper construction.

an edge is inserted whenever two connected components overlap.

Cover

(b) The range [a,b] is covered by the two intervals A,B.

The construction of Mapper on a 1d function

(a) A scalar function f : X −→ [a,b].

(c) This gives a decomposition of the domain the domain X. The inverse image of A consists of two connected
components α1 and α2, and the inverse image of B consists of three connected components β1, β3 and β3.

(d) The connected components are represented by the nodes in the Mapper construction.

an edge is inserted whenever two connected components overlap.

Cover

(b) The range [a,b] is covered by the two intervals A,B.

The construction of Mapper on a 1d function

(a) A scalar function f : X −→ [a,b].

(c) This gives a decomposition of the domain the domain X. The inverse image of A consists of two connected
components α1 and α2, and the inverse image of B consists of three connected components β1, β3 and β3.

(d) The connected components are represented by the nodes in the Mapper construction.

an edge is inserted whenever two connected components overlap.

Cover

(b) The range [a,b] is covered by the two intervals A,B.

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G.
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert
an edge between the corresponding nodes.
10-return the graph G

