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Motivation

The linear shape of the data is a fundamental assumption 
underlying the linear regression method

Clustering algorithms assume that the data is clustered in a 
certain way.

The classical problem of fitting data set of point in R n using 
linear regression



Motivation

Understanding the shape of the data is a fundamental 
assumption underlying the analytical method 
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Roughly speaking, topology  of an  object studies the way this object is

connected.

Topology studies the properties of shapes that do not change under 

continuous deformations.

==

So topologically, the following objects are 

equivalent because we can deform each one of 

them contentiously without tearing into the other.

Motivation

Topology makes these notions precise.

=/=
However, the sphere cannot 

be continuously deformed into 

the torus. Hence the sphere 

and the torus are topologically 

district.
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Which of the following functions is homeomorphism? If not, which one of the three conditions is violated? 

Homeomorphism



Homeomorphism-examples
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How can we explain a topological space to a computer ?

Key Idea : we use simple building blocks (called simplices)

to build more complicated shape.



How can we explain a topological space to a computer ?



Graphs representation: list of edges

[ [0,1], [1,3],[1,4] [3,4], [3,2]]

• The vertices can be recovered from the edges.

• The order of the vertices is important only if the graph is directed.



Simplicial Complex-precise definition
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Simplicial Complex



Approximation of the shape



Cover of a space

A cover of a space X is a collection of sets U whose union is the entire space
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Approximation of the shape

Nerve of a space

Covers can be used to obtain an approximation for the underlying data



Approximation of the shape

Key idea: every set is replaced by a node
every intersection is replaced by an edge
if we have intersection between three sets we replace them with a face and so on.
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https://www.researchgate.net/profile/Facundo_Memoli/publication/221571174_Topological_Methods_for_the_Analysis_of_High_Dimensional_Data_Sets_and_3D_Object_Recognition/links/02bfe50fe76b396b8f000000/Topological-Methods-for-the-Analysis-of-High-Dimensional-Data-Sets-and-3D-Object-Recognition.pdf
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Mapper Example

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every 
point in X.
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The construction of Mapper on a 1d function

(a) A scalar function f : X −→ [a,b]. 

This gives a decomposition of the domain the domain X. The inverse image of A consists of two connected 
components α1 and α2, and the inverse image of B consists of three connected components β1, β3 and β3.

The connected components are represented by the nodes in the Mapper construction.

an edge is inserted whenever two connected components overlap.
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The Mapper Algorithm

Suppose that we are given a data set 𝑋 and a scalar function 𝑓: 𝑋 → [𝑎, 𝑏] defined on every point in X.

1- Define a cover for the interval [a,b]. Say that this cover is 𝑈 = 𝑈1, … , 𝑈𝑛
2- Consider all the points x in X with f(x) in 𝑈1. Put those points in container, say 𝑉1
3-Consider all the points x in X with f(x) in 𝑈2. Put those points in container, say 𝑉2
4-Do that for every interval 𝑈𝑖 𝑖𝑛 𝑈
5-Run a clustering algorithm on on 𝑉1 and store those clusters.
6- Run the same clustering algorithm on every 𝑉𝑖
7-Create an empty graph G. 
8- For every cluster we obtain from {𝑉𝑖|1 ≤ 𝑖 ≤ 𝑛 } create a node for the graph G
9- Check overlap between the clusters (nested for loop on all clusters) : whenever there is an overlap insert 
an edge between the corresponding nodes.
10-return the graph G
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