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Intuition

Suppose that we have a surface made of some sort of metal.

Suppose that we have two heat sources one of them is very hot and one of them is
very cold.

Place the hot source on one point of the metal surface and place the cold surface
on another point.

After waiting for some time the heat of the points of the surface are going to
change gradually. So the points near the hot source will be also hot and the effect
of this source will be less the further we move away from the source. The same
applies for the cold source.

Wait until the heat of the surface stabilizes and points on the surface are not
changing its heat anymore.

We obtain a “distribution of the heat” on the metal surface.

The equilibrium state is very special and it has a name. We call such a “distribution”
a harmonic function on the surface.
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The Laplacian on a surface

Suppose that f is a scalar smooth function on the surface M. In other words

f:M—R

The Laplacian Af(p) of a function f at a point p is the rate at which the
average value of f over disks centered at p, deviates from f(p) as the radius of
the disks grow
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so a function is harmonic if f(p) is equal to the average of the summation
values of the boundary of its surrounding neighborhood.



Harmonic Functions and Mean value property

This property is a very important property of harmonic functions. In fact it characterizes harmonicity:

Theorem  (Mean Value property) A function f: M — R is harmonic if and
only if

for each point p € M and each B(p,r) C M.



Linking our intuition with the more precise concepts

* So how do we use our knowledge that we have now to write the problem that we
considered in earlier in a mathematical precise way?
e So at the equilibrium state we have the following:
1. The rate at which the average value of f over disks centered at p, deviates
from f(p) as the radius of the disks grows.
2. The function always has two fixed points : the hot source p1 and the cold
source p2. Suppose that f(p1)=c1 and f(p2)=c2.

* More precisely this can be written as follows:

Af =0on M\{p1,p2} and f(p1) = c1 and f(p2) = c2




Laplace equation

Such an equation is called the Laplace equation. The equation
has the following more general form :

Af =0on M\D and f(p) = g(p) for every point on D

For instance, the solution in the Figure given here is obtained by
solving :

Af=0and
fp1) =
f(p2) = c2
f(p3) = c3
f(p4) = C4
f(ps) = cs

So here D = {p1, p2,p3, P4, D5}




Discretization of the Laplacian operator

* Let M be a mesh with a set of vertices V.
e Letf: M — R be ascalar function on the mesh M defined on the vertices of M.

* The discrete Laplace operator on a mesh M of f at a vertex vi is defined as follows

[Vi,vj]
Af(o)= > wi(fv;) = fvy)) / \/\

v;€lk(vy) \ /\/
Where :

1. Ik(vi) is the set of vertices adjacent to the vertex vi
2. wijis a certain positive weight associated to the edge [vi,vj]. For
instance wij can be chosen to be 1 for each edge [vi,vj] on the mesh M.
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Assume that we are provided with a set Vo C V of £ > 1 constrained points,
where f must take on a specified values. In other words f(v;) = g(v;) for every

v; € V. To solve the Laplace equation, we solve the system of equations
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Discretization of the Laplace equation

Assume that we are provided with a set Vo C V of £ > 1 constrained points,
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Example

Assume that Vo = {v1,v9,v3,v4,v5} is the set given in the Figure :

Then the harmonic function illustrated by the colors on the Figure can be

A f(v;)

f(vs)

obtained by solving :
Af(v;) = 0 for every v; in V\V¢

f(v1) =
f(v2) =co
f(vz) =c3
f(va) = cq
f(vs) =cs5

U_E%‘ZU w;; (f(v;) — f(vi)) =0 for every v, € V\V¢ /\%V/]\

g(v;) for every v; € Vi
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Discretization of the Laplace equation

Example

Assume that Vo = {vy,v2} is the set given in the Figure :

Then the harmonic function illustrated by the colors on the Figure can be
obtained by solving :

Af(v;) = 0 for every v; in V\V¢

fv1) =

f(v2) = c2




Solving the Laplace equation on a mesh is solving a linear system
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v Elk(vg)
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where the elements of the nxn matrix L are given by
Lii kyem Wik Hi=]J.

Lij = —wjj if edge (i, j) € M,
0 otherwise.

As well as the equations coming from :

fvi) = g(v;) for every v; € Vo



Solving the Laplace equation on a mesh is solving a linear system

v2

We can write this differently. Write the following matrix :

4

1 ifi=jandv; € V.,
ifj:< 0 if v € Ve,i# j,
L;j otherwise.

\




Solving the Laplace equation on a mesh is solving a linear system

We can write this differently. Write the following matrix :

1 ifi=jandv; € V.,
ifj:< 0 if v € Ve,i# j,
~. L;j otherwise.
Then we solve :
If=b

where

0 otherwise,

b — {g(v@-) if v; € Ve,




