Morse Theory on Triangulated Meshes
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What is Morse theory ?

Morse Theory is a tool in differential topology that is concerned with the relations between
the geometric and topological aspects of manifolds and the real-valued functions defined on
them.




What is Morse theory ?

Morse Theory is a tool in differential topology that is concerned with the relations between
the geometric and topological aspects of manifolds and the real-valued functions defined on
them.

One of the primary interests in this theory is the relationship between the topology of a
smooth manifold M and the critical points of a real-valued smooth function f defined on M.
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What is Morse theory ?

Consider the following A

example. Let M be a 2- /

dimensional torus.
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We call the point on M at
which this topological change
occurs a critical point



What is Morse theory ?
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Morse theory on smooth surfaces

Let M be a compact smooth surface and let I = [a,b] C R, where a < b, be a
closed interval. Let f : M —— [ be a smooth function defined on M. A point
x € M is called a critical point of f if the differential df,. is zero. A value ¢ in R is
called a critical value of fis f~'(c) contains a critical point of f. A point in M is
called a reqular point if it is not a critical point. Similarly, if a value ¢ € R is not a
critical value then we call it a regular value. The inverse function theorem implies
that for every regular value ¢ in R the level set f~!(¢) is a I-manifold, i.e., f~1(c)
is a disjoint union of circles. A critical point is called non-degenerate if the matrix
of the second partial derivatives of f, called the Hesstan matriz, is non-singular. If
all the critical points of f are non-degenerate and all critical points have distinct

values then f is a Morse function.



Morse Lemma

Lemma (Morse Lemma) Let M be a smooth surface, f : M — R be a
smooth function and p be a non-degenerate critical point of f. We can choose a

chart (¢,U) around p such that f o ¢~ takes exactly one of the following three

forms:
I fod  (X,Y) =X+ Y2 +c S las)
2. fo gb_l(X, Y) =—-X2-Y?+ec. minimum saddle maximum

3. fod Y (X,)Y)=X2—Y%+c.

The form of a Morse function f around a critical point can be proven to be

independent of the choice of the chart.



Handle decomposition

Let M be a smooth surface and let f : M — R be a Morse
function defined on M. Define the set

Mi, ={xeM: f(x) <t}




Handle decomposition

Theorem Let f : M — R be Morse function. Let p be a critical point
of index i and f(p) =t be its corresponding critical value. Let € be chosen small

enough so that [ has no critical values on the interval [t — €, t + €|. Then :

1. If indexs(p) = 0, then My, is diffeomorphic to the disjoint union of M;_.
and a 2-dimensional disk D?.

2. If indexs(p) = 1, then My, can be obtained from M, . by attaching a 1-
handle. That means that M;.. can be obtained by gluing a rectangular strip
D' x D! to the boundary of M,_. along D' x 0D*.

3. If indexs(p) = 2, then M., can be obtained by capping off the surface M,_.
with a disk D*. That means that M,.. is obtained by gluing a disk D? along

its boundary OD?* to one of the boundary components of M;_..



Morse Theory on Meshes
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Morse Theory on Meshes
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Mesh components




Morse Theory on Meshes

Suppose that we have a mesh M and suppose that f is a scalar function defined on
the set of vertices of M.
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of v on the ring




Morse theory on Meshes

Suppose that we have a mesh M and suppose that f is a scalar function defined on
the set of vertices of M.

Consider a local ring neighborhood
around a vertex and consider the values
of v on the ring

/‘4.\ /‘%‘\ Locally, the Morse scalar function
Q% %Q o /. around a vertex has one of the
\ \ \._‘/ \‘_‘/ following possibilities



Morse Scalar Functions on Meshes
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Morse Scalar Functions on Meshes
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Types of vertices

Given a Morse function f on a triangulated mesh M.
Then we can classify the vertices of M as follows

The upper link of v is defined as

Lk*(v) = {u € Lk(v) : f(u) > f(v)},

and the lower link is defined by

v is regular if |Lk*(v)| = 2

Lk~ (v) = {u € Lk(v) : f(u) < f(v)}, a maximum with index 2 if |Lk*(v)| = 0.

is a minimum with index 0 if |[Lk~(v)| = 0

saddle with index 1 and multiplicity m > 1 if [Lk*")| =2 + 2m

and mixed link

Lk*(v) = {(u1,u2) : f(uy) < f(v) < f(uz))}.

Definition: A scalar function f on a triangulated mesh M is PL Morse function if each vertex is either regular or
simple critical (minimum, maximum or saddle with m=1) and the function values of the vertices are distinct.






Morse Scalar Functions on Meshes

We will represent the isolines

as follows:




Morse Scalar Functions on Meshes

In the following example we .
represent :

minimum point by a blue sphere ue

maximum point by a red sphere
saddle point by a green sphere



Morse Scalar Functions on Meshes




Applications of Morse Theory

Morse theory has found many applications recently in geometric processing
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Applications of Morse Theory

Morse theory has found many applications recently in geometric processing

Extracting Surface feature lines (Sahner et. el.)

Surface quadrangulation (Dong et. el.)

Cutting a surface into a disk (Ni et. el)



Reeb Graph

Given a surface M and a scalar function defined on it, we
can define a combinatorial structure called the Reeb graph
of M and f by collapsing the level sets of f as illustrated in

the figure A
f
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