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Piecewise linear functions on a triangulated meshes

Suppose that the set vertex of ¥ is {vy,...,v,} and let f : ¥ — R be a map
defined on the vertices of .. Let x be a point in |X|. Then x € |F| where F =
[0, v, v @5 a face in X. Hence, there are positive real numbers A\;, \; and A such
that A\i +Aj + A = 1 and v = \jvi + Aju; + Awvy. Without loss of generality we can
assume that i = 1,j = 2 and k = 3. Define the hat function B;(x) : || — R by
Bi(x) = X fori=1,2 and 3 and B;(x) = 0 for i > 4. In particular B;(vj) = §;;
for 1 <1i.5 < 3. The extension of f can be written as :

f(r) = Z flv;)B;(x),

where >, Bi(z) = 1 and Bi(x) > 0.



The hat function Bi

This function is called the hat function because if one defines B; on a face

i, v, U] then the graph of the function of B; looks like

1,
Uk



Gradient of a scalar function of a face in a mesh
Lemma Let f : FF — R be a piece-wise linear function defined on a
face F' = [vy,vq,v3] via the values f(v;), i = 1,2,3. Let E; be the counterclockwise
oriented edge opposite to the vertex v;. Then the gradient of [ is a constant and
tangential vector on I given by :

3
1
grad [ = V=23 )l B[ (1.1)
=1

where uj 15 is a unit vector perpendicular to the edge E; and oriented so that it
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FIGURE 1.1. The gradients of hat functions of triangle.

VB

points into the face F'. Moreover, U = H%;(Eﬂl cot o; — E;_q cot 3;) where o; and

B3; are the angles on both sides of the edge E;, «; is the angle opposite the edge E; 4
and 3; is the angle opposite to the edge E; .



Gradient of a scalar function of a face in a mesh

Proof. Let r be an arbitrary point inside the triangle F'. Then r can be written as
r = By(r)vy + Ba(r)vs + Bs(r)vs.

where B; : F' — R is the hat function on the vertex v; defined by B;(v;) = ¢;; for
i, 7 = 1,2, 3. Hence any the function f has the form:

3
fr)=>" f)Bi(r) (1.2)
i=1
Now the barycentric coordinate B; is given by the ratio B;(r) = AAT where A; =

Lhi||E;||. See Figure 1.2. Since Ay and ||E;|| are invariant for the same face F,



Gradient of a scalar function of a face in a mesh
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then B; is a function of h;. Hence

VB — d (hi”Eﬂ'H)E}: ||Ez||? (1.3)
' dhi 21‘4_}- ' 214F !
where % is a unit vector perpendicular to the vector E; and oriented so that it

points into the face F'. Now equation (1.2) implies :

Vf= Z VB; f(vi),

: Ei_1xE;
Hence (1.1) follows. For the second part of the Lemma, choosing u, = ”b‘i—xb‘” X
T— T
E;

£

equation (1.3) becomes:



Gradient of a scalar function of a face in a mesh
1 Ez'—l X EE'

QAF ||E1'_1 X EEH
However,
Ei_1 X E; CE - (Ei, E;) Ei_1 + (Ej, Ei_1) E;
|Ei—y x Eif| = |Ei—1 % Ei|
- (B, E;))Ei—y — (Ey,E;i_1)Ei1 + (Ei, Ei1) Ei_1 + (E;, Ei_1) E;
|Ei—1 x Eil|
(B, Ein) B+ (B Eioy) (—Eiy)

|Ei—1 x Ei|
where in the last equation we used the fact F; 1 + E; + F; 11 = 0. One the other
|Ei-1 x Ei|| = [|Ei x Ein1]| = 245
Hence,

(B, Eiv1) Biy — (B Bi) By (Ey Eip) By (B Eiq) By
|Ei1 % Ej| B x Bl |Ei-1 x Ei|
(—Ei, Eiq) (Ei—1) n (Ei, —FEi_1) Eipa
| — Ei X Eit1]| || — Ei1 x Eil|

However, since the cotangent of an angel between two vectors v and w is equal to ﬁ,
then E r
i—1 X Ly )
x FE; = (cot a)E;11 — (cot B)E;_1.
B x Eif| ~ 1

The result follows. []



The divergence theorem

fdivF(u)dA = / < F(u),n(u) > ds

A 0A



Discrete Laplace-Beltrami operator

fdivF(u)dA = / < F(u),n(u) > ds

A 0A

In particular, if f : M — R is a smooth scalar field on the surface M then we
can write divVf = Af and hence

lAfAzldivadA=£<Vf,n(u)>ds

when A is very small

1
Af ~ E/<Vf,n(u) > ds
DA



Discrete Laplace-Beltrami operator

On a triangulated mesh around a vertex v; we have

zn@gx% > ‘/ < Vf, ity > ds

all faces Ty round v; OANT.
1

where n, is the normal the edge in the face T}, opposite to the vertex v;.

Hence, we must determine :

/ < Vil > ds
AANT

Since < V f,n > is a constant on T' then

/ < Vfn>ds=<Vfn> / ds
JANT HANT
= in,ﬁ}HIj—fEkH
< Vf, =|lz; — zgl|lu >
= <Vf,—s >

where ||z; — zp||d = s;

X |
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Discrete Laplace-Beltrami operator

On the other hand one has at any point x in the triangle T' =

Vi(x) =

since Bi(z) + Bj(z) + Br(z) =

Hence at any point x in the triangle T = [z;, x;, x| we have

Vi) = [fi(-VBj(z) -
[i)VB;(z) +

— (fj

fiVBi(x) + f;VB;(z) + [V By(z)

1

(fx — fi)VBy(z)

= (fj — f)QA ;= zi||d; + (fr —

Hence

1
m((fj

— fi)sj +

(fx — fi)sk)

1
)QA

VBi(z)) + [;VBj(x) + frVBi(z)

H'Tk — TmH“k

[xi: Ljs 117;4;]

1 then VB;(z) + VBj(z) + VBi(xz) = 0.

Xi

-
.
Oy, e



Discrete Laplace-Beltrami operator

X |

Hence
S
/ > k
9 S| XL“ xk
1 S T
< —si, V[f(z) >= E((fj — fi) < =si,85 > +(fr — fi) < —siysp > xj n
However, < —s;,s; >= —||z; — zxl|||zx — x;i|| cos b and Ar = 35 ||z; —
zi||||ze — xi||sin 8 and similar formulas can be written for < —s;, sp >
Hence

< =5, Vf(x) >= ((f; — fi) cot O + (fi — fi) cot 0;)

When we sum on every triangle around the vertex v;, every edge |v;,vj]
contributes by two summands (f; — f;) cot 0; ; and (f; — f;) cot 3; ;. Namely, the
edge [v;,v;] contributes by (cot@; ; + cot 3; ;)(f; — fi) hence

Afw) = 3 (cotf+cot5i,)(f; — fi)

‘ vielk(v;)




Discrete divergence on a triangulated meshes

If A c M and X is a vector field on a smooth surface a smooth surface
divergence theorem states :

/divX(v)dA = / < X(w),n(v) > ds

A oA

This suggests the following discretization on a triangulated mesh.

Suppose that X : FI(M) — R3is a vector field that assigns to every face F
in M a vector X (F') that lies completely in F', then the divergence of X at a
vertex v; is defined as

divX(u;) =c / < X;,n; >ds
j€face around (u;)

where n; 1s the normal the edge in the face F; opposite to the vertex v;
and c is a constant that depends on the neighborhood of v;. Some calculations
implies the explicit formula :




Discrete divergence on a triangulated meshes

some calculations implies the explicit formula :

1
div X (v;) = 5 Z cot 0, (e, X;) + cot b, (ej,. X;) .
JEF(1)

-

where F'(7) is the set of indices of all faces that are incident to the vertex v;, e, , e,
are the two vectors in face j that contain the vertex v; and 0, ,60;, are the angles

that are opposite the edges e;, and e;, respectively. See Figure 4.3,

H:.iz N 0 L




The discrete operators are consistent

One can show that

Af = div Vf



