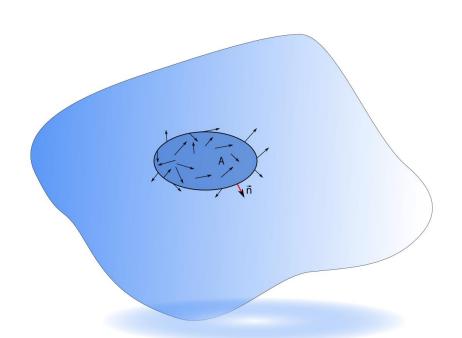


Discrete Operators on Triangulated Meshes



Piecewise linear functions on a triangulated meshes

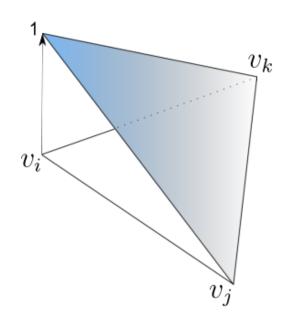
Suppose that the set vertex of Σ is $\{v_1, ..., v_n\}$ and let $f: \Sigma \longrightarrow \mathbb{R}$ be a map defined on the vertices of Σ . Let x be a point in $|\Sigma|$. Then $x \in |F|$ where $F = [v_i, v_j, v_k]$ is a face in Σ . Hence, there are positive real numbers λ_i, λ_j and λ_k such that $\lambda_i + \lambda_j + \lambda_k = 1$ and $x = \lambda_i v_i + \lambda_j v_j + \lambda_k v_k$. Without loss of generality we can assume that i = 1, j = 2 and k = 3. Define the hat function $B_i(x) : |\Sigma| \longrightarrow \mathbb{R}$ by $B_i(x) = \lambda_i$ for i = 1, 2 and 3 and $B_i(x) = 0$ for $i \geq 4$. In particular $B_i(v_j) = \delta_{ij}$ for $1 \leq i, j \leq 3$. The extension of f can be written as:

$$\hat{f}(x) = \sum_{i=1}^{n} f(v_i)B_i(x),$$

where $\sum_{i=0}^{n} B_i(x) = 1$ and $B_i(x) \geq 0$.

The hat function Bi

This function is called the hat function because if one defines B_i on a face $[v_i, v_j, v_k]$ then the graph of the function of B_i looks like



Lemma Let $f: F \longrightarrow \mathbb{R}$ be a piece-wise linear function defined on a face $F = [v_1, v_2, v_3]$ via the values $f(v_i)$, i = 1, 2, 3. Let E_i be the counterclockwise oriented edge opposite to the vertex v_i . Then the gradient of f is a constant and tangential vector on F given by:

$$\operatorname{grad} f = \nabla f = \frac{1}{2A_F} \sum_{i=1}^{3} f(v_i) ||E_i|| \overrightarrow{u_i}$$
(1.1)

where $\overrightarrow{u_i}$ is is a unit vector perpendicular to the edge E_i and oriented so that it

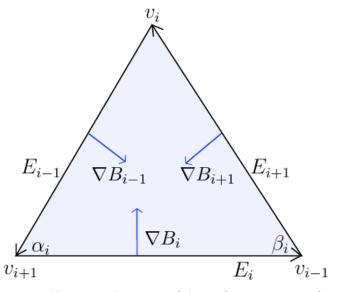


FIGURE 1.1. The gradients of hat functions of triangle.

points into the face F. Moreover, $\overrightarrow{u_i} = \frac{1}{||E_i||} (E_{i+1} \cot \alpha_i - E_{i-1} \cot \beta_i)$ where α_i and β_i are the angles on both sides of the edge E_i , α_i is the angle opposite the edge E_{i+1} and β_i is the angle opposite to the edge E_{i-1} .

Proof. Let r be an arbitrary point inside the triangle F. Then r can be written as

$$r = B_1(r)v_1 + B_2(r)v_2 + B_3(r)v_3.$$

where $B_i: F \longrightarrow \mathbb{R}$ is the hat function on the vertex v_i defined by $B_i(v_j) = \delta_{ij}$ for i, j = 1, 2, 3. Hence any the function f has the form:

$$f(r) = \sum_{i=1}^{3} f(v_i)B_i(r)$$
 (1.2)

Now the barycentric coordinate B_i is given by the ratio $B_i(r) = \frac{A_i(r)}{A_F}$ where $A_i = \frac{1}{2}h_i||E_i||$. See Figure 1.2. Since A_F and $||E_i||$ are invariant for the same face F,

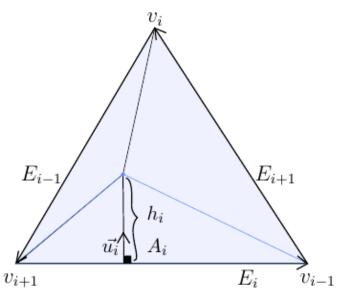


FIGURE Barycentric coordinates.

then B_i is a function of h_i . Hence

$$\nabla B_i = \frac{d}{dh_i} \left(\frac{h_i ||E_i||}{2A_F} \right) \overrightarrow{u_i} = \frac{||E_i||}{2A_F} \overrightarrow{u_i}$$
 (1.3)

where $\overrightarrow{u_i}$ is a unit vector perpendicular to the vector E_i and oriented so that it points into the face F. Now equation (1.2) implies :

$$\nabla f = \sum_{i=1}^{3} \nabla B_i f(v_i),$$

Hence (1.1) follows. For the second part of the Lemma, choosing $\overrightarrow{u_i} = \frac{E_{i-1} \times E_i}{||E_{i-1} \times E_i||} \times \frac{E_i}{||E_i||}$, equation (1.3) becomes:

$$\nabla B_i = \frac{1}{2A_F} \frac{E_{i-1} \times E_i}{||E_{i-1} \times E_i||} \times E_i$$

However,

$$\frac{E_{i-1} \times E_{i}}{||E_{i-1} \times E_{i}||} \times E_{i} = \frac{-\langle E_{i}, E_{i} \rangle E_{i-1} + \langle E_{i}, E_{i-1} \rangle E_{i}}{||E_{i-1} \times E_{i}||}$$

$$= \frac{-\langle E_{i}, E_{i} \rangle E_{i-1} - \langle E_{i}, E_{i-1} \rangle E_{i-1} + \langle E_{i}, E_{i-1} \rangle E_{i-1} + \langle E_{i}, E_{i-1} \rangle E_{i}}{||E_{i-1} \times E_{i}||}$$

$$= \frac{\langle E_{i}, E_{i+1} \rangle E_{i-1} + \langle E_{i}, E_{i-1} \rangle (-E_{i+1})}{||E_{i-1} \times E_{i}||}$$

where in the last equation we used the fact $E_{i-1} + E_i + E_{i+1} = 0$. One the other

$$||E_{i-1} \times E_i|| = ||E_i \times E_{i+1}|| = 2A_F$$

Hence,

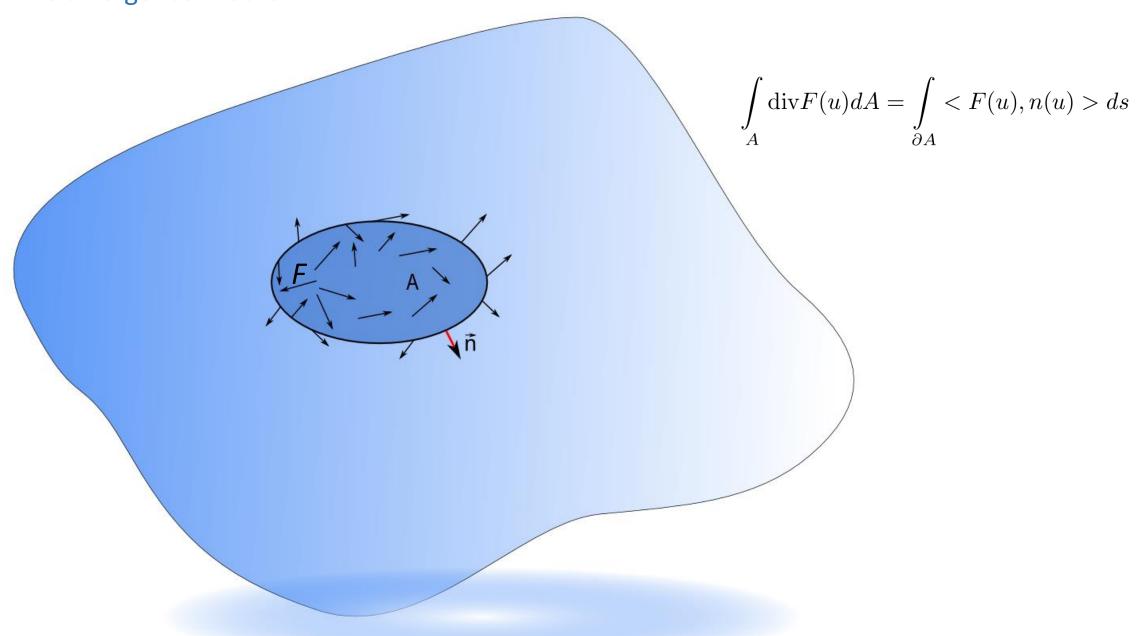
$$\frac{\langle E_{i}, E_{i+1} \rangle E_{i-1} - \langle E_{i}, E_{i-1} \rangle E_{i+1}}{||E_{i-1} \times E_{i}||} = \frac{\langle E_{i}, E_{i+1} \rangle E_{i-1}}{||E_{i} \times E_{i+1}||} - \frac{\langle E_{i}, E_{i-1} \rangle E_{i-1}}{||E_{i-1} \times E_{i}||} \\
= \frac{\langle -E_{i}, E_{i+1} \rangle (-E_{i-1})}{||-E_{i} \times E_{i+1}||} + \frac{\langle E_{i}, -E_{i-1} \rangle E_{i+1}}{||-E_{i-1} \times E_{i}||}$$

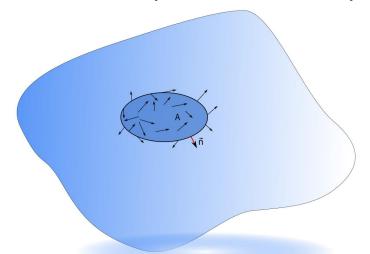
However, since the cotangent of an angel between two vectors v and w is equal to $\frac{\langle v,w\rangle}{||v\times w||}$, then

$$\frac{E_{i-1} \times E_i}{||E_{i-1} \times E_i||} \times E_i = (\cot \alpha)E_{i+1} - (\cot \beta)E_{i-1}.$$

The result follows.

The divergence theorem





$$\int_{A} \operatorname{div} F(u) dA = \int_{\partial A} \langle F(u), n(u) \rangle ds$$

In particular, if $f: M \to \mathbb{R}$ is a smooth scalar field on the surface M then we can write $\operatorname{div} \nabla f = \Delta f$ and hence

$$\int_{A} \Delta f A = \int_{A} \operatorname{div} \nabla f dA = \int_{\partial A} \langle \nabla f, n(u) \rangle ds$$

when A is very small

$$\Delta f \approx \frac{1}{A} \int_{\partial A} \langle \nabla f, n(u) \rangle ds$$

On a triangulated mesh around a vertex v_i we have

$$\Delta f(v_i) \approx \frac{1}{A} \sum_{all \text{ faces } T_q \text{ round } v_i} \int_{\partial A \cap T_q} \langle \nabla f, \vec{n}_q \rangle ds$$

where n_q is the normal the edge in the face T_q opposite to the vertex v_i . Hence, we must determine:

$$\int_{\partial A \cap T} <\nabla f, \vec{n} > ds$$

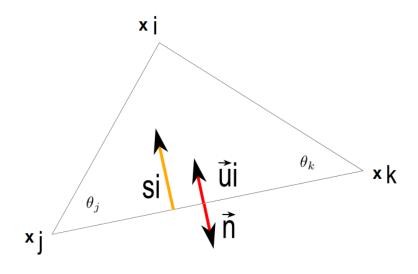
Since $\langle \nabla f, \vec{n} \rangle$ is a constant on T then

$$\int_{\partial A \cap T} < \nabla f, \vec{n} > ds = < \nabla f, \vec{n} > \int_{\partial A \cap T} ds$$

$$= < \nabla f, \vec{n} > ||x_j - x_k||$$

$$= < \nabla f, -||x_j - x_k|| ||\vec{u}| >$$

$$= < \nabla f, -s_i >$$



where
$$||x_j - x_k||\vec{u} = s_i$$

On the other hand one has at any point x in the triangle $T = [x_i, x_j, x_k]$

$$\nabla f(x) = f_i \nabla B_i(x) + f_j \nabla B_j(x) + f_k \nabla B_k(x)$$

since $B_i(x) + B_j(x) + B_k(x) = 1$ then $\nabla B_i(x) + \nabla B_j(x) + \nabla B_k(x) = 0$. Hence at any point x in the triangle $T = [x_i, x_j, x_k]$ we have

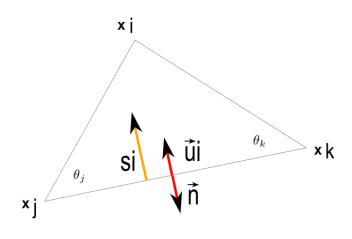
$$\nabla f(x) = f_{i}(-\nabla B_{j}(x) - \nabla B_{k}(x)) + f_{j}\nabla B_{j}(x) + f_{k}\nabla B_{k}(x)$$

$$= (f_{j} - f_{i})\nabla B_{j}(x) + (f_{k} - f_{i})\nabla B_{k}(x)$$

$$= (f_{j} - f_{i})\frac{1}{2A_{T}}||x_{j} - x_{i}||\vec{u}_{j} + (f_{k} - f_{i})\frac{1}{2A_{T}}||x_{k} - x_{i}||\vec{u}_{k}$$

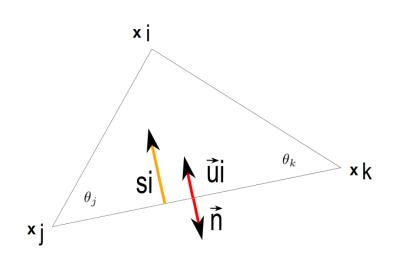
$$= \frac{1}{2A_{T}}((f_{j} - f_{i})s_{j} + (f_{k} - f_{i})s_{k})$$

Hence



Hence

$$<-s_i, \nabla f(x)> = \frac{1}{2A_T}((f_j-f_i)<-s_i, s_j>+(f_k-f_i)<-s_i, s_k>$$

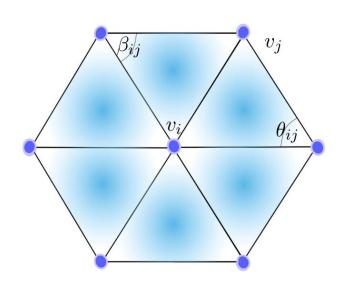


However, $\langle -s_i, s_j \rangle = -||x_j - x_k|| ||x_k - x_i|| \cos \theta_k$ and $A_T = \frac{1}{2} ||x_j - x_k|| ||x_k - x_i|| \sin \theta_k$ and similar formulas can be written for $\langle -s_i, s_k \rangle$ Hence

$$\langle -s_i, \nabla f(x) \rangle = ((f_j - f_i) \cot \theta_k + (f_k - f_i) \cot \theta_j)$$

When we sum on every triangle around the vertex v_i , every edge $[v_i, v_j]$ contributes by two summands $(f_j - f_i) \cot \theta_{i,j}$ and $(f_j - f_i) \cot \beta_{i,j}$. Namely, the edge $[v_i, v_j]$ contributes by $(\cot \theta_{i,j} + \cot \beta_{i,j})(f_j - f_i)$ hence

$$\Delta f(v_i) = \frac{1}{A_i} \sum_{v_j \in lk(v_i)} (\cot \theta_{i,j} + \cot \beta_{i,j}) (f_j - f_i)$$



Discrete divergence on a triangulated meshes

If $A \subset M$ and X is a vector field on a smooth surface a smooth surface divergence theorem states :

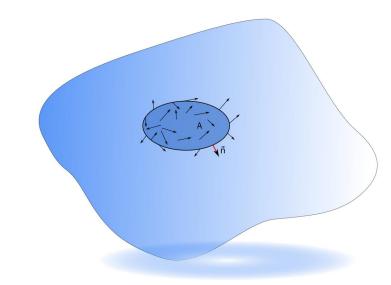
$$\int_{A} div X(v) dA = \int_{\partial A} \langle X(v), n(v) \rangle ds$$

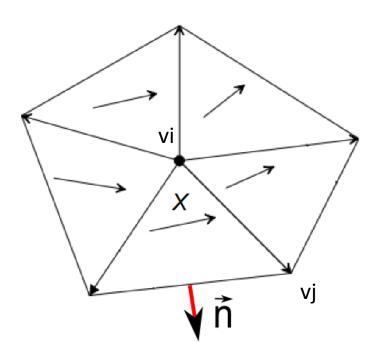
Suppose that $X: F(M) \to \mathbb{R}^3$ is a vector field that assigns to every face F in M a vector X(F) that lies completely in F, then the divergence of X at a vertex v_i is defined as

$$divX(u_i) = c$$

$$\int_{j \in \text{face around } (u_i)} \langle X_j, n_j \rangle ds$$

where n_j is the normal the edge in the face F_j opposite to the vertex v_i and c is a constant that depends on the neighborhood of v_i . Some calculations implies the explicit formula :

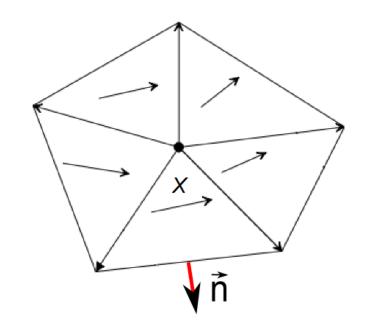




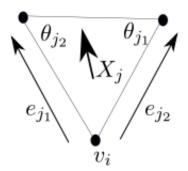
Discrete divergence on a triangulated meshes

some calculations implies the explicit formula:

$$\operatorname{div} X(v_i) = \frac{1}{2} \sum_{j \in F(i)} \cot \theta_{j_1} \langle e_{j_1}, X_j \rangle + \cot \theta_{j_2} \langle e_{j_2}, X_j \rangle,$$



where F(i) is the set of indices of all faces that are incident to the vertex v_i , e_{j_1} , e_{j_2} are the two vectors in face j that contain the vertex v_i and θ_{j_1} , θ_{j_2} are the angles that are opposite the edges e_{j_1} and e_{j_2} respectively. See Figure 4.3.



The discrete operators are consistent

One can show that

$$\Delta f = \operatorname{div} \nabla f$$