Topological Algorithms-I

Closed curves on surfaces

A path on a space S is the image of a continuous function $f:[0,1]-->S$.

Closed curves on surfaces

A path on a space S is the image of a continuous function $f:[0,1]-->S$.

A closed curve is a curve that forms a path whose starting point is also its ending.

Closed curves on surfaces

A path on a space S is the image of a continuous function $f:[0,1]-->S$.

A closed curve is a curve that forms a path whose starting point is also its ending.
closed curves

open curves

Closed curves on surfaces

A path on a space S is the image of a continuous function $f:[0,1]-->S$.

A closed curve is a curve that forms a path whose starting point is also its ending.

closed curves

open curves

A closed curve on a triangulated mesh can be represented by a finite sequence of consecutive half-edges

$$
\left\{\left[v_{1}, v_{2}\right],\left[v_{2}, v_{3}\right], \ldots,\left[v_{n-1}, v_{n}\right],\left[v_{n}, v_{1}\right]\right\}
$$

Closed curves on surfaces

A path on a space S is the image of a continuous function $f:[0,1]-->S$.

A closed curve is a curve that forms a path whose starting point is also its ending.

closed curves

open curves

A closed curve on a triangulated mesh can be represented by a finite sequence of consecutive half-edges

$$
\left\{\left[v_{1}, v_{2}\right],\left[v_{2}, v_{3}\right], \ldots,\left[v_{n-1}, v_{n}\right],\left[v_{n}, v_{1}\right]\right\}
$$

Curve homotopy

Intuitively, two closed curves on a surface are homotopic if one of them can be deformed into the other continuously without leaving the surface

Curve homotopy

Intuitively, two closed curves on a surface are homotopic if one of them can be deformed into the other continuously without leaving the surface

These two curves are homotopic

Curve homotopy

Intuitively, two closed curves on a surface are homotopic if one of them can be deformed into the other continuously without leaving the surface

These two curves are not homotopic

Curve homotopy

Homotopy is an equivalence relation : it divides the set of all closed curves on a surface into equivalence classes.

Curve homotopy

Homotopy is an equivalence relation : it divides the set of all closed curves on a surface into equivalence classes.

These two curves in the same homotopy class

Curve homotopy

Homotopy is an equivalence relation : it divides the set of all closed curves on a surface into equivalence classes.

These two curves are in two different homotopy classes

Problems

1-Given two loops on a triangulated surface, determine if they are homotopic.

Problems

1-Given two loops on a triangulated surface, determine if they are homotopic.
2-Given a loop a on surface. Find a loop b in the same homotopy class of a with shortest length

Case study

Case study

Case study

Case study

Case study

Case study

Case study

Case study

Case study

Case study

The image of line L that passes through the origin is a closed curve on the torus if and only if the line L goes through another lattice point, say (m, n) where m and n are integers .

Case study

The image of line L that passes through the origin is a closed curve on the torus if and only if the line L goes through another lattice point, say (m, n) where m and n are integers .

This is the case if and only if the slope of L is n / m, a rational number.

Case study

Case study

Case study

These two curves correspond to a homotopic closed curves on the torus

Case study

These two curves also correspond to a homotopic closed curves on the torus

Case study

These two curves also correspond to a homotopic closed curves on the torus

In general, if two curves in the plane both of them start at $(0,0)$ and end at (m, n) correspond to homotopic curves on the torus

Case study

These two curves also correspond to a homotopic closed curves on the torus

In other words, the homotopy class of a closed curve on the torus is determined entirely by its starting and end points in the plane

Case study

What does a closed curve in the plane correspond to?

covering space

The map between the plane and the torus is called a covering map. The plane is called a covering space. There are many coverings for the torus. The plane is special since it is simply connected. When a covering map is simply connected we say that the covering is universal.

Covering space for genus 2

Case study

Covering space for genus 2

The universal covering space of orientable closed surfaces are the sphere (genus zero), the plane (genus one) and the disk (high genus).

General setting

In general let \bar{M} be the universal covering space of of a surface M and let $p: \bar{M} \rightarrow M$ be a covering map.

General setting

In general let \bar{M} be the universal covering space of of a surface M and let $p: \bar{M} \rightarrow M$ be a covering map. Then there is a one to one correspondence between the pre-image of $q, p^{-1}(q)$, and the the equivalenc homotopy classes of loops in M starting at $q, \pi(M, q)$.

General setting

In general let \bar{M} be the universal covering space of of a surface M and let $p: \bar{M} \rightarrow M$ be a covering map. Then there is a one to one correspondence between the pre-image of $q, p^{-1}(q)$, and the the equivalenc homotopy classes of loops in M starting at $q, \pi(M, q)$.

$$
\phi: p^{-1}(q) \rightarrow \pi(M, q)
$$

Fix a point \hat{q}_{0} in $p^{-1}(q)$ for any \hat{q}_{k} in $p^{-1}(q)$ we can find a path $\hat{\gamma}: I \rightarrow \bar{M}$ connecting \hat{q}_{0} and \hat{q}_{k}. The projection of $\hat{\gamma}$ is a loop in M.

General setting

In general let \bar{M} be the universal covering space of of a surface M and let $p: \bar{M} \rightarrow M$ be a covering map. Then there is a one to one correspondence between the pre-image of $q, p^{-1}(q)$, and the the equivalenc homotopy classes of loops in M starting at $q, \pi(M, q)$.

$$
\phi: p^{-1}(q) \rightarrow \pi(M, q)
$$

Fix a point \hat{q}_{0} in $p^{-1}(q)$ for any \hat{q}_{k} in $p^{-1}(q)$ we can find a path $\hat{\gamma}: I \rightarrow \bar{M}$ connecting \hat{q}_{0} and \hat{q}_{k}. The projection of $\hat{\gamma}$ is a loop in M.

$$
\phi\left(\hat{q}_{k}\right)=[p(\hat{\gamma})]
$$

General setting

In general let \bar{M} be the universal covering space of of a surface M and let $p: \bar{M} \rightarrow M$ be a covering map. Then there is a one to one correspondence between the pre-image of $q, p^{-1}(q)$, and the the equivalenc homotopy classes of loops in M starting at $q, \pi(M, q)$.

$$
\phi: p^{-1}(q) \rightarrow \pi(M, q)
$$

Fix a point \hat{q}_{0} in $p^{-1}(q)$ for any \hat{q}_{k} in $p^{-1}(q)$ we can find a path $\hat{\gamma}: I \rightarrow \bar{M}$ connecting \hat{q}_{0} and \hat{q}_{k}. The projection of $\hat{\gamma}$ is a loop in M.

$$
\phi\left(\hat{q}_{k}\right)=[p(\hat{\gamma})]
$$

Suppose that we choose another path $\hat{\gamma}_{1}$ between \hat{q}_{0} and \hat{q}_{k}. How do we know that $p(\hat{\gamma})$ and $p\left(\hat{\gamma}_{1}\right)$ are homotopic?

General setting

In general let \bar{M} be the universal covering space of of a surface M and let $p: \bar{M} \rightarrow M$ be a covering map. Then there is a one to one correspondence between the pre-image of $q, p^{-1}(q)$, and the the equivalenc homotopy classes of loops in M starting at $q, \pi(M, q)$.

$$
\phi: p^{-1}(q) \rightarrow \pi(M, q)
$$

Fix a point \hat{q}_{0} in $p^{-1}(q)$ for any \hat{q}_{k} in $p^{-1}(q)$ we can find a path $\hat{\gamma}: I \rightarrow \bar{M}$ connecting \hat{q}_{0} and \hat{q}_{k}. The projection of $\hat{\gamma}$ is a loop in M.

$$
\phi\left(\hat{q}_{k}\right)=[p(\hat{\gamma})]
$$

Suppose that we choose another path $\hat{\gamma}_{1}$ between \hat{q}_{0} and \hat{q}_{k}. How do we know that $p(\hat{\gamma})$ and $p\left(\hat{\gamma}_{1}\right)$ are homotopic?

This is because $\hat{\gamma}$ and $\hat{\gamma}_{1}$ are homotopic since \bar{M} is simply connected.

