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Homotopy is an equivalence relation : it divides the set of all closed curves on a 
surface into equivalence classes.

These two curves are in two different homotopy classes
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Problems

1-Given two loops on a triangulated surface, determine if they are homotopic.

2-Given a loop a on surface. Find a loop b in the same homotopy class of a with 
shortest length
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The image of line L that passes through the origin is a closed 
curve on the torus if and only if the line L goes through another 
lattice point, say (m,n) where m and n are integers . 



Case study

This is the case if and only if the slope of L is n/m, a rational 
number.

The image of line L that passes through the origin is a closed 
curve on the torus if and only if the line L goes through another 
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These two curves correspond to a homotopic closed curves on 
the torus
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Case study

These two curves also correspond to a homotopic closed 
curves on the torus

In general, if two curves in the plane both of them start at (0,0) 
and end at (m,n) correspond to homotopic curves on the torus



Case study

These two curves also correspond to a homotopic closed 
curves on the torus

In other words, the homotopy class of a closed curve on the 
torus is determined entirely  by its starting and end points in 
the plane



Case study

What does a closed curve in the plane correspond to?



covering space

The map between the plane and the torus is called a covering map. The plane is called a covering space. There are 
many coverings for the torus. The plane is special since it is simply connected. When a covering map is simply 
connected we say that the covering is universal.
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The universal covering space of orientable closed surfaces are the sphere (genus zero), the plane (genus one) and the disk 
(high genus).

Covering space for genus 2
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