
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326208667

Propagate and Pair: A Single-Pass Approach to Critical Point Pairing in Reeb

Graphs

Preprint · July 2018

DOI: 10.13140/RG.2.2.31490.79049

CITATIONS

0

READS

67

3 authors:

Junyi Tu

University of South Florida

11 PUBLICATIONS 109 CITATIONS

SEE PROFILE

Mustafa Hajij

The Ohio State University

29 PUBLICATIONS 39 CITATIONS

SEE PROFILE

Paul Rosen

University of South Florida

70 PUBLICATIONS 393 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mustafa Hajij on 05 July 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/326208667_Propagate_and_Pair_A_Single-Pass_Approach_to_Critical_Point_Pairing_in_Reeb_Graphs?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/326208667_Propagate_and_Pair_A_Single-Pass_Approach_to_Critical_Point_Pairing_in_Reeb_Graphs?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Junyi_Tu?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Junyi_Tu?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_South_Florida?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Junyi_Tu?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mustafa_Hajij?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mustafa_Hajij?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Ohio_State_University?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mustafa_Hajij?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paul_Rosen?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paul_Rosen?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_South_Florida?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paul_Rosen?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mustafa_Hajij?enrichId=rgreq-ec040416282f618237494689191f61d2-XXX&enrichSource=Y292ZXJQYWdlOzMyNjIwODY2NztBUzo2NDUwNTMzNDkzNjc4MTBAMTUzMDgwNDExMTExNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Propagate and Pair: A Single-Pass Approach to Critical Point
Pairing in Reeb Graphs

Junyi Tu, Mustafa Hajij, Paul Rosen

Abstract—With the popularization of Topological Data Analysis, the Reeb graph, has found new applications as a summarization
technique in the analysis and visualization of large and complex data. The Reeb graph provides a topological summary for a space,
whose usefulness extends beyond just the graph itself. Pairing critical points enables forming topological fingerprints, often represented
as persistence diagrams, that provides important insights into the structure and noise in the data. Although the body of work addressing
the efficient calculation of Reeb graphs is large, the literature on pairing is limited. In this paper, we discuss two algorithmic approaches
for the pairing of critical points in Reeb graphs. We first discuss a multipass approach that separates pairing for essential and
non-essential critical points. Next, we introduce a new algorithm, called Propagate and Pair, that efficiently pairs all critical points in
a single-pass. The algorithm is also general enough to support pairing critical points in Reeb graph approximation (e.g. Mapper),
non-looping variants of Reeb graphs, such as contour trees, as well as split and join trees.

Index Terms—Reeb graph, Topological Data Analysis, Critical point pairing, Persistence diagram

1 INTRODUCTION

The last two decades have witnessed great advances in methods that rely
on topological techniques to analyze and study data in a process known
as Topological Data Analysis (TDA). The popularity of topology-based
techniques is due in large part to their robustness and their applicability
to a wide variety of datasets and scientific domains [24]. The Reeb
graph [29] was originally proposed as a data structure to encode the
geometric skeleton of 3D objects, but recently it has been re-purposed
as an important tool in TDA.

The Reeb graph of a scalar function defined on a domain gives a
topological summary of that domain. The Reeb graph encodes the
evolution of the connectivity of the level sets induced by a scalar
function defined on the domain by sweeping from negative infinity
to positive infinity and tracking the birth and death of the connected
components of the level sets. Beside their usefulness in handling large
data [17], Reeb graphs and their non-looping variant, contour trees [7],
have been successfully used in feature detection [35], data reduction and
simplification [9, 31], image processing [23], shape understanding [2],
visualization of isosurfaces [3] and many other applications. One
challenge with using Reeb graphs to directly visualize large data is
that the graph may still be too large or complex to directly analyze,
therefore requiring further abstraction.

A fundamental tool in TDA is persistent homology, introduced by
Edelsbrunner et al. [18]. Typically, persistent homology operates by
transforming a point cloud data into a filtration (a nested sequence of
spaces), performing persistent homology computation on the filtration,
and parameterizing the obtained topological structures by their life-time
in the filtration. As a result, persistent homology gives a topological de-
scription. This topological description is usually called the persistence
diagram. The notion of persistence can be applied to any act of birth
that is paired with an act of death. Since the Reeb graph encodes the
birth and the death of the connected components of the iso-contours of
a scalar function, the notion of persistence can be applied to pair the
critical points in the Reeb graph [1].

While many algorithms have focused on the efficient calculation of
Reeb graph structures themselves, few have described algorithms for
pairing critical points. Although the critical point pairing problem itself
is not a large data problem, it is a critical component in the analysis of
large data. As seen in Figure 1, the dataset, which may be very high

• Junyi Tu is with the University of South Florida. E-mail:
junyi@mail.usf.edu.

• Mustafa Hajij is with the University of South Florida. E-mail:
mhajij@usf.edu.

• Paul Rosen is with the University of South Florida. E-mail: prosen@usf.edu.

resolution, produces a much smaller Reeb graph. After that, the critical
points are paired, and a persistence diagram displays the data, as seen
in Figure 2. This final step can still be challenging, particularly when
considering essential critical points—those critical points associated
with loops in the Reeb graph. These require a complicated search that
needs to be performed on each critical point.

In this paper, our contribution is the description and implementation
of two efficient algorithms to directly compute persistence diagrams
from Reeb graphs. Our first algorithm uses an 2-pass approach for non-
essential critical point pairing that relies upon branch decomposition
on a join and split tree. We then introduce an algorithm for pairing
essential critical points, also based upon join trees. Finally, this leads
to our second approach, a new single-pass algorithm for pairing both
non-essential and essential critical points efficiently in Reeb graphs,
Mapper graphs, contour trees, split trees, and join trees.

2 REEB GRAPH

Let X be a triangulable topological space, and let f : X→ IR be a contin-
uous function defined on it. We define an equivalence relation ∼ on X ,
such that x ∼ y, if and only if x and y belongs to the same connected
component of f−1(r) for some r ∈ IR. The Reeb graph of the space X

G

E D

P

I

F

L

J
K

M

H

N

O

A
B

C

A
B

G

E D

P

C

I

F

L

J
K

M

H

N

O

(a) Data with a scalar function

9

1

G

E D

P

I

F

L

J
K

M

H

N

O

A
B

C

A
B

G

E D

P

C

I

F

L

J
K

M

H

N

O

(b) Reeb graph of the data

Fig. 1. Topological data analysis and visualization pipeline using Reeb
graphs shows (a) data being processed into (b) a Reeb graph. Using the
Reeb graph, critical points are then paired, and a persistence diagram,
as shown in Figure 2, is used to visualize the structure of the data.

1

P

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

A
B

G

E

C

P

N

O

K

H

A B C D E F G H I J K L M N O P

B,C

E,G

N,O

H,K

A,P

(a) Persistence diagram

D

F

J

H

K1K2

L,D

J,F

M,I

P

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

A B C D E F G H I J K L M N O P

(b) Extended persistence diagram

Fig. 2. (a) The persistence diagram Dg0(f) and (b) extended persistence
diagram ExDg1(f) for the Reeb graph in Figure 1(b) provide a visual
abstraction of the structures in the original data.

and the function f : X → IR, denoted by R f (X), is the quotient space
X/∼ equipped with the quotient topology induced by the quotient map
π : X → R f (X). When X is clear from the context, we will denote the
Reeb graph simply by R f . Under some regularity conditions (which we
shall define later) the Reeb graph has the structure of a CW complex.

The input function f : X → IR also induces a continuous function
f̃ : R f → IR defined as f̃ (x̃) = f (x) = r for any preimage x ∈ f−1(r).
Usually we plot the Reeb graph with the vertical coordinate of a point
z as the function value f (z). The Reeb graph can be thought of as a
topological summary of the space X using the information encoded
by the scalar function f . More precisely, the Reeb graph encodes the
changes that occur to connected components of the level sets of f−1(r)
as r goes from negative infinity to positive infinity. Figure 1 (a) and (b)
shows an example of a Reeb graph defined on a surface.

The function f̃ can be used to classify points on the Reeb graph
as follows. Let x be a point in R f . The up-degree of x is number of
branches (1-cells) incident to x that have higher values of f̃ than x. The
down-degree is of x is defined similarity. A point x on R f is said to be
regular if its up-degree and down-degree are equal to one. Otherwise it
is a critical point. A critical point on the Reeb graph is also a node of
the Reeb graph. A critical point is called a minimum if its down-degree
is equal to 0. Symmetrically, a critical point is said a maximum if its
up-degree is equal to 0. Finally, a critical point is said to be a down-fork
(up-fork) if its down-degree (up-degree) is larger than 1.

Without loss of generality we assume that Reeb graph is a single
connected component, and all nodes on the Reeb graph have different
function values. Moreover, we will assume also that every node in the
Reeb graph is either a minimum, a maximum, a down-fork with down-
degree 2, or an up-fork with up-degree 2. This is not a restriction to the
general case since a Reeb graph that does not satisfy these conditions
can be conditioned to fit them, as we will show in Section 4.

Regularity Condition on Reeb Graphs. Let a ∈ IR. We call X≤a =
{x∈X | f (x)≤ a} a sublevel set of f . Similarly, we call X≥a = {x∈X |
f (x)≥ a} a superlevel set of f . Let Hp(X) denote the p-th homology
group of the triangulable topological space X . In this paper we consider
homology with coefficients in a finite field, so Hp(X) is a vector space.

To ensure that R f has the structure of a CW complex we need to
assume that the scalar function f is tame in the following sense [4]. Let
{a1, ...,an} be a finite sequence of real numbers such that the following
conditions are satisfied:

1. −∞ < min(f) = a1 < · · · < an = max(f) < ∞ such that for
all i < n and s, t ∈ [ai,ai+1) with s < t, the homomorphism
Hp(X≤s) −→ Hp(X≤t) induced by the natural inclusion X≤s ↪→
X≤t is an isomorphism.

2. In the same way, for all s, t ∈ (ai,ai+1] with s < t, the ho-
momorphism Hp(X≥t) −→ Hp(X≥s) induced by the inclusion
X≥t ↪→ X≥s is an isomorphism.

3. Hp(X≤ai)< ∞ for all i.

The first conditions insures that the topological changes that occur to a
sublevel set X≤s only occur as s goes through ai for some i. Similarly,
the second condition insures that topological changes occur to a super-
level set X≥s when s passes through ai for some i. The last condition
insures that the rank of the homology group is finite at ai for all i. All
scalar functions in this paper will be assumed to be tame.

2.1 Persistent Homology and Persistence Diagram
The notion of persistent homology was originally introduced by Edels-
brunner et al. [18]. Here we present the theoretical setting for the
computation of the persistence diagram associated with a scalar func-
tion defined on a triangulated topological space. We then show how
this is related to the persistent pairing on Reeb graphs. We start by
presenting a concise description of persistent homology. For more
details the reader is referred to [18].

Consider the following sequence of vector spaces,

0 = Hp(X0)→ Hp(X1)→ ·· · → Hp(Xn) = Hp(X), (1)

where Xi = X≤ai and each homomorphism gi+1
i : H(Xi)→ H(Xi+1) on

the homology groups is induced by the inclusion Xi ↪→ Xi+1. We can
define g j

i : H(Xi)→H(X j) for any i≤ j by composition. We say that a
class α ∈ H(X`) is born at (index) i if

α ∈ img`i but α /∈ img`i−1.

A class α born at index i dies entering (index) j if

g j
i (α) ∈ img j

i−1 but g j−1
i (α) /∈ img j−1

i−1 .

In this case, the index pair (i, j) is called a persistence pair, and the
difference j− i is the (index) persistence of the pair.

Persistent homology records such birth and death events. In particu-
lar, the p-th ordinary persistence diagram of f , denoted by Dgp(f), is
a multiset of pairs (b,d) corresponding to the birth value b and death
value d of some p-dimensional homology class. Since the homology
Hp(X) may not be trivial in general, any nontrivial homology class of
Hp(X), referred to as an essential homology class, will never die during
the sequence in (1). These events are associated with the cyclic por-
tions of the Reeb graph. By appending a sequence of relative homology
groups to (1), we obtain the following sequence :

0 = Hp(X0)→ ··· → Hp(Xn) = Hp(X) =

Hp(X ,X≥an)→ Hp(X ,X≥an−1)→ ··· → Hp(X ,X≥a0) = 0.

Since the last vector space Hp(X ,X≥a0) = 0, each essential homology
class eventually dies in the relative part of the above sequence at
some relative homology group Hp(X ,X≥a j). In other words, each
essential homology class gets paired with some relative homology class
in Hp(X ,X≥a j).

We refer to the multiset of points encoding the birth and death time
of pth homology classes created in the ordinary part and destroyed
in the relative part of the sequence as the pth extended persistence
diagram of f , denoted by ExDgp(f). In particular, for each point (b,d)
in ExDgp(f) there is an essential homology class in Hp(X) that is born
in Hp(X≤b) and dies at Hp(X ,X≥d). Observe that for the extended
persistence diagram the birth time b for an essential homology class
in Hp(X≤b) is larger than or equal to death time d for the relative
homology class in Hp(X ,X≥d) that kills it.

2.2 Persistence Diagram of Reeb Graph
Of particular interest to us are the persistence digram Dg0(f) and
extended persistence diagram ExDg1(f). These two diagrams can be
computed completely by considering the Reeb graph R f . We give an
intuitive explanation to this fact here, and we refer the reader to [4] for
more details.

Note that pairing of critical points of a scalar function can be com-
puted independent of the computation of Reeb graphs. However, the
pairing is best described using Reeb graph since the structure of Reeb
graph clearly reveals the topological feature associated to the pairing.

2

Before we describe the points in persistence digram Dg0(f) and ex-
tended persistence diagram ExDg1(f) ,we need to distinguish between
two types of forks in the Reeb graph, namely the ordinary forks and the
essential forks. Let R f be a Reeb graph and let s be a down-fork such
that a = f (s). We say that the down-fork s is an ordinary fork if the
lower branches of s are contained in disjoint connected components C1
and C2 of (R f)<a. The down-fork a is said to be essential if it is not
ordinary. The ordinary and essential up-forks are defined similarly.

We now demonstrate the meaning of the persistence digram Dg0(f)
and extended persistence diagram ExDg1(f) of Reeb graph.

Branching feature of a Reeb graph. Let a ∈ R. We consider the
changes that occur in H0((R f)≤a) as a increases. A connected compo-
nent of (R f)≤a is created when a passes through a minimum of R f . Let
C be a connected component of (R f)≤a. We say that a local minimum
a of R f creates C if a is the global minimum of C.

Every ordinary up-fork is paired with a local minimum to form one
point in the persistence diagram Dg0(f) as follows. Let s be an or-
dinary down-fork with f (a) = s and let C1 and C2 be the connected
components of (R f)<a. Let x1 and x2 be the creators of C1 and C2.
Without loss of generality we assume that f (x1)< f (x2). The homol-
ogy class [x2] that is created at f (x2) and dies at f (s) gives rise to a
point (x2,s) in the ordinary persistence diagram Dg0(f). Note that
such a pair occurs when the minimum is a branch in the Reeb graph,
hence we name it branching feature.

Cycle feature of a Reeb graph. Let s be an essential down-fork.
We call the down-fork s is a creator of a 1-cycle in the sublevel set
(R f)≤a. As shown in [1], s will be paired with an essential up-fork s′ to
form an essential pair (s′,s), and hence a point (s′,s) in the extended
persistence diagram ExDg1(f). The essential up-fork s′ is determined
as follows. Let Γs be the set of all cycles born at s and each cycle
corresponds to a loop in the Reeb graph R f . Let γs be an element of
Γs with largest minimum value of f among these cycles born at s. The
point s′ is the point at which the function f achieves this minimum on
the cycle γs.

3 RELATED WORK

The first algorithm to compute Reeb graph on a triangulated surface
was presented by Shinagawa and Kunii [32], with time complexity
O(n2), where n is the number of triangles in the mesh. The efficient
computation of Reeb graphs has been an active research topic for last
two decades. Cole-McLaughlin et al. [11] improved the performance
to O(n log(n)). Pascucci et al. [28] presented an online method to
computes Reeb graphs. Harvey et al. [21] deployed a randomized
algorithm to compute Reeb graph on arbitrary simplicial complexes
K in expected time O(mlog(n)), where m is the size of 2-skeleton of
K (i.e., the total number of vertices, edges, and triangles), and n is
the number of vertices. For the application of Reeb graphs, Hilaga et
al. [22] provide a Multi-resolution Reeb Graph (MRG) representation of
triangle meshes which is independent of rotation in topology matching.

By reducing the Reeb graph to contour tree via loop surgery, Tierny
et al. [36] presented an algorithm to compute Reeb graph on a volumet-
ric mesh in R3. The work by Doraiswamy and Natarajan [16] utilizes
the union of contour trees to compute the Reeb graph. Other Reeb
graph algorithms can be found in [14, 15, 26].

When Reeb graph is acyclic, it is also known as contour tree. Carr et
al. [8] produced the first well-known algorithms for computing contour
trees. Contour trees are used in volume rendering [38] and noise
removal, while retaining important features in data [31].

Reeb graphs and contour trees have found numerous applications in
graphics and visualization including data skeletonization [19], locus
cut [12], data abstraction [25], retrieving topological information from
point data, such as homology group computation [10, 13], volume
rendering [39], and terrain applications [5, 20].

Branch decomposition was first used to provide a multiscale view
of contour trees [27]. This provides the framework for pairing non-
essential critical points in a Reeb graph. The first known description
to pair critical points of a Morse function on a 2-manifold, including

essential critical points, is given in [1]. However, the description is
high level with no specific algorithm provided. Similar description of
persistence pairing algorithm is also seen in [4].

Pairing of critical points of a scalar function has found multiple appli-
cations including segmentation of deformable shapes [34], hierarchical
shape segmentation [30], description of protein shape [40], automatic
extraction of surface structures [37], and 3D shape description and
matching [6].

To the best of our knowledge, this paper is the first systematic devel-
opment and implementation of two intuitive and efficient algorithms to
pair the nodes of Reeb graphs by persistent features.

4 CONDITIONING THE GRAPH

As mentioned in Section 2.2, our approach assumes that all point in the
Reeb graph are either a minimum, maximum, up-forks with up-degree
2, or down-forks with down-degree 2. Fortunately, graphs that do not
abide by these requirements can be conditioned to fit them. We define
the J+K degree of a node as the J up-degree and K down-degree. New
nodes needed during processing are created with ε offset, where ε is a
very small number.

There are 4 node conditions to be corrected:

• 1+1 nodes: Nodes with both 1 up- and down-degree are non-
critical. Therefore, they only need to be removed from the graph.
This is done by removing the non-critical point and connecting
the nodes above and below, as seen in Figure 3(a).

• 0+2 (and 2+0) nodes: Nodes with 0 up-degree and 2 down-
degree are degenerate maximum node, in that they are both down-
fork and local maximum. As shown in Figure 3(b), this condition
is corrected by added a new node for the local maximum ε higher
value. This type of node does not usually occur in Reeb graphs,
but it can occur in approximations of a Reeb graph, such as
Mapper [33].

• 2+2 nodes: Nodes with both 2 up- and down-degree are degener-
ate double forks, both down-fork and up-fork. Figure 3(c) shows
how double forks can be corrected by splitting into 2 nodes ε

distance apart.

(a) Non-Critical (b) Degenerate Maximum

(c) Double Fork (d) Complex Fork

Fig. 3. Before pairing, the nodes of Reeb graph must be properly condi-
tioned. There are 4 node configurations that require conditioning. New
nodes and edges are shown in blue.

3

• 1+ N>2 (and N>2 +1) nodes: Nodes with down-degree 3 or
higher, are complex forks to pair. These are the forks corresponds
to degenerate saddles in f , such as monkey saddles. A single
critical point pairing to these forks just reduces the degree of
down-fork by 1, requiring complicated tracking of pairs. To
simplify this, as seen in Figure 3(d), complex forks can be split
into 2 forks ε apart. The upper down-fork retains 1 of the original
down edges. The new down-fork connects with the old and
takes the remaining down-edges. For even higher-order forks, the
operation can be repeated on the lower down-fork.

Beyond these requirements, we assume the Reeb graph is a single
connected component. If the Reeb graph contains multiple connected
components, each one can simply be extracted and processed in parallel.

5 MULTIPASS APPROACH

Roughly speaking the Reeb graph gives rise to two types of topological
features: the branching features and cycle features. These features
are precisely encoded in the zero persistence diagram Dg0(f) and first
extended persistence diagram ExDg1(f) [4]. The persistence diagram
Dg0(f) can be obtained by pairing the non-essential fork nodes of
the Reeb graph. On the other hand, the extended persistence diagram
ExDg1(f) can be obtained by pairing of essential fork nodes. We next
demonstrate these two steps using Figure 4(a) as a running example.

5.1 Non-Essential Fork Pairing
Identifying the non-essential forks can be reduced to calculating both
a join and a split tree on the Reeb graph. In our implementation,
this is done using Carr’s et al.’s approach [8]. Then, a stack-based
algorithm, based upon branch decomposition [27], can be executed to
pair critical points. The algorithm operates as a depth first search that
seeks out simply connected forks (i.e., forks connected to 2 leaves) and
recursively pairs and collapses the tree.

The algorithm processes a stack that is initially seeded with the root
of the graph. Assuming the graph has been properly conditioned, at
each iteration, 1 of 3 operation types occurs, as seen in Figure 5(a).
Operation Type 1 occurs when the top of the stack is a fork. In this case,
the children of the fork are pushed onto the stack. Operation Type 2
occurs when the top of the stack is a leaf, but the next node is a fork. In
this case, the leaf and fork have their orders swapped. Finally, operation
Type 3 has 2 variants that occur when 2 leaf nodes sit atop the stack.
In both variants, one leaf is paired with the fork, and the other leaf is

A
B

G

E D

P

C

I

F

L

J
K

M

H

N

O

(a) Reeb graph

P

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

A
B

G

E

C

P

N

O

K

H

A B C D E F G H I J K L M N O P

B,C

E,G

N,O

H,K

A,P

(b) Split Tree

P

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

A
B

G

E

C

P

N

O

K

H

A B C D E F G H I J K L M N O P

B,C

E,G

N,O

H,K

A,P

(c) Join Tree

D

I

F

L

J

M

(d) Essential Forks

Fig. 4. In the multipass approach, (a) the Reeb graph has (b) a split tree
and (c) a join tree extracted for non-essential pairing. Then in a separate
process, the (d) essential forks are paired one at a time. The persistence
diagram for this Reeb graph is shown in Figure 2.

pushed back onto the stack. The pairing occurs with the leaf that has a
value closer to the value of the fork. The stack is processed until only a
single leaf node remains on it.

CHILD

FORK

…

CHILD

FORK

…

LEAF

LEAF

FORK

…

FORK

…

LEAF

LEAF

LEAF

FORK

… …

LEAF

LEAF

LEAF

FORK

… …

Type 1 Type 2

Type 3a Type 3b

(a) The 4 cases of stack configurations and their result. Type 1 and 2
involve stack reorganization, while Type 3a and 3b are pairing operations.

Type 1

Type 1Type 2

Type 3a

Type 3b

K K

H

K

G

H

E

C

K

G

H

E

B

K

G

H

E

K

H

A

Type 3a

Type 1

H

A

A

A

G

C

G

K

(b) Example processing the join tree from Figure 4(c).

Fig. 5. Illustration of non-essential fork pairing. (a) The 4 cases for
stack processing are illustrated with their resulting configurations. (b) An
example pairing of the join tree from Figure 4(c) shows the stack at each
processing step, from left to right.

The algorithm operates identically on both join and split trees. Fi-
nally, the unpaired global minimum and maximum left on the stacks
created for the join tree and split tree, respectively, can be paired.

Figure 5(b) shows an example for the join tree in Figure 4(c). Initially
the root K is placed onto the stack. A Type 1 operation pushes the
children, G and H, onto the stack. Next, a Type 2 operation reorders the
top of the stack. G, a down-fork, in now atop the stack, pushing its 2
children, E and C, onto the stack. Another Type 1 pushes C’s children,
A and B onto the stack. In the next 3 steps, a series of Type 3 operations
occur. First B and C are paired, followed by E and G, and finally H
and K. At the end, A, the global minimum, is the only point remaining
on the stack. These assigned pairs, B/C, E/G, and H/K, appear in the
Dg0(f) in Figure 2(a), along with the split tree pairing, N/O, and the
global min/max pairing, A/P.

5.2 Essential Forks Pairing
The remaining unpaired forks are essential forks, as seen in Figure 4(d).
We extract an algorithms from the high-level description of [4] to pair
them. The procedure processes up-forks one at a time.

The essential fork pairing algorithm can be treated as join tree prob-
lem. For a given up-fork, the node can be split into two nodes. A join
tree can be computed by sweeping the superlevel set. At each step of
the sweep, the connected components are calculated. The pairing for a
selected up-fork occurs at the down-fork who merges the 2 generated
nodes into a single connected component.

Figure 6 shows the sweeping process for the up-fork D. Initially
(Figure 6(a)), D is split into DL and DR, which are each part of separate
connected components, denoted by color. As the join tree is swept past

4

I

F

L

J

M

G

H

K

E

DL DR

(a)

I

F

L

J

M

G

H

K

E

DL DR

(b)

I

F

L

J

M

H

K

E

G

DL DR

(c)

I

F

L

J

M

G

H

K

E

DL DR

(d)

I

F

L

J

M

G

H

K

E

DL DR

(e)

DL

F

L

J

M

DR

G

H

K

E

I

(f)

F

L

M

G

H

K

E

I
J

DL DR

(g)

F

L

M

G

H

E

I
J

K

DL DR

(h)

F

L

M

G

H

E

I
J

K

DL DR

(i)

Fig. 6. The join tree-based essential fork pairing for up-fork D. (a) D is
initially split into DL and DR. (b-h) The colors indicate different connected
components as the join tree is swept up the superlevel set. (i) The
pairing is found when DL and DR are contained in the same connected
component.

E (Figure 6(b)), a new connected component is formed. In Figure 6(c),
F is added to the connected component of DR. As the join tree is swept
past G (Figure 6(d)), the E and DL connected components join. The
process continues until Figure 6(g), where 3 connected components
exist. The purple and yellow components join at K (Figure 6(h)). Fi-
nally at L (Figure 6(i)), both DL and DR are part of the same connected
component. This indicates that D pairs with L.

Figure 7 shows the superlevel sets and associated join trees for the
up-forks D, F , and I. The pairing partner L/D, J/F , and M/I can all be
seen in the ExDg1(f) in Figure 2(b).

6 SINGLE-PASS ALGORITHM: PROPAGATE AND PAIR

In the previous section, we showed that the critical point pairing prob-
lem could be broken down into a series of merge tree computations. For
non-essential forks this was in the form of join and split trees, which are

merge trees of the superlevel sets and sublevel sets, respectively. For
essential saddles, it came in the form of a special join tree calculation
for each essential up-fork. A natural question is whether these merge
tree calculations can be combined into a single-pass operation, which
is exactly what follows.

6.1 Basic Propagate and Pair
The algorithm operates by sweeping the Reeb graph from lowest to
highest value. At each point, a list of points from the sublevel set
is maintained. When a point is processed in the sweep, 2 possible
operations occur on these lists: propagate and/or pair.

Propagate. The job of propagate is to push labels from unpaired nodes
further up in the Reeb graph. 4 cases exist.

• For local minima, a label for the current critical point is propa-
gated upward. In the examples of Figure 8(a) and 8(b), both A
and B are propagated to C.

• For down-forks, all unpaired labels are propagated upwards. In
the example of Figure 8(c), the critical points B and C are paired,
thus only A is propagated to D.

• For up-forks, all unpaired labels are propagated upwards, along
with labels for the fork that are each tagged with the specific
branch of the that fork created them (in the examples with sub-
scripts L and R). This tag is critical for closing essential cycles.
In the example of Figure 8(d), the labels A and DL are propagated
to G, and labels A and DR are propagated to F .

• Local maxima have no need to propagate.

Pair. The pairing operation searches the list of labels to determine an
appropriate partner from the sublevel set. The pairing operation only
occurs for local maxima and down-forks.

• For local maxima, the list labels is searched for the unpaired up-
fork with the largest value. Those critical points are then paired.

DL

I

F

L

J

M

I

FL

L

J

M

IL

L

J

M

DR

FR

IR

G

E

H

K

(a) D Superlevel set

DL

I

F

L

J

M

I

FL

L

J

M

IL

L

J

M

DR

FR

IR

G

E

H

K

(b) F Superlevel set

DL

I

F

L

J

M

I

FL

L

J

M

IL

L

J

M

DR

FR

IR

G

E

H

K

(c) I Superlevel set

L

J J

M

DL

FL

IL

DR

FR

IR

(d) D Join Tree

F

L

J J J

M

DL

FL

IL

DR

FR

IR

(e) F Join Tree

F

L

J J

M

DL

FL

IL

DR

FR

IR

(f) I Join Tree

Fig. 7. Essential fork pairing for the example Reeb graph from Figure 4.
Each up-fork (D, F, and I, respectively) is split into 2 pieces and (d-f)
a join tree calculated from the (a-c) superlevel set to find the partner.
Figure 6 shows a detailed calculation for D.

5

A []
B

G

D

C [A]

F

P

I

L

J
K

M

H

N

O

E

(a) Local minimum

A
B []

G

E

C [A,B]

F

D

P

I

L

J
K

M

H

N

O

(b) Local minimum

A
B

G

D [A]

C [A,B]

F

P

I

L

J
K

M

H

N

O

E

(c) Non-essential down-fork

A
B

G [A,DL]

D [A]

C

F [A
,D

R]

P

I

L

J
K

M

H

N

O

D

E

(d) Essential up-fork

A
B

C

D

P

I

L

J
K

M

H

N

O

G [A,DL,E]
D F [A

,D
R]

E []

(e) Local minimum

A
B

C

D

P

I

L

J
[A

,D
R
,F

L,
F R

]

K

M

H

N

O

G [A,DL,E]

F [A
,D

R]

E

D[A]

(f) Essential up-fork

D[A]

F

A
B

C

D

P

I

L
[A

,D
L]

K

M

H

N

O

G [A,DL,E]
J

[A
,D

R
,F

L,
F R

]

E

(g) Non-essential down-fork

G
F

A
B

C

D

P

M

H[]

N

O

I[H] D

J
[A

,D
R
,F

L,
F R

]

E

L
[A

,D
L]

K

(h) Local minimum

G
F

A
B

C

D

P

K
[H

,I R
]M

H

N

O

DI[H]

L
[A

,D
L,

H
,I

L]

I

J
[A

,D
R
,F

L,
F R

]

E

(i) Essential up-fork

D[A]

G
F

A
B

C

P

I

M

H

N

O

D

K
[A

,D
R
,H

,I
R
]

I

J
[A

,D
R
,F

L,
F R

]

E

L
[A

,D
L,

H
,I

L]

(j) Essential down-fork

G
F

A
B

C

D

P

I
J

H

N

O

E

K
[A

,D
R
,H

,I
R
]

L
[A

,D
L,

,I L]

D[A]

I[A,DR]

(k) Non-essential down-fork

A
B

G

C

F

D

P

I
J

K

H

N

O

M [A,IL,IR]

E

L
[A

,D
L,

D
R
,I

L]

I[A]

(l) Essential down-fork

Fig. 8. Propagate and Pair algorithm on the example Reeb graph from Figure 4. At each step, the node being processed is in bold; propagated
edges are shown in brackets; pairing is shown in blue; and virtual edges are shown in orange. The example is continued in Figure 9.

6

A
B

G

C

F

D

P

I

L

J
K

H

N [A]

O

M [A,IL,IR]

E

(a) Essential down-fork

A
B

G

C

F

H

D

P
 [A

,N
R]

I

L

J
K

M

H

N [A]

O [A,NL]
N

E

(b) Non-essential up-fork

A
B

G

C

F

D

I

L

J
K

M

H

N

O [A,NL]
N[A]

E

P
 [A

,N
R]

(c) Local maximum

A
B

G

C

F

H

D

I

L

J
K

M

H

N

O

E

P
 [A

]

(d) Global min/max

Fig. 9. Continuation of Figure 8.

In the example from Figure 9(c) for local maximum O, the list is
searched and NL is determined to be the closest unpaired up-fork.

• For down-forks, two possible cases exist, essential or non-
essential, which can be differentiated by searching the available
labels. First, the list is searched for the largest up-fork with both
legs. Both legs indicate that the current down-fork is essential,
and it is paired with the associated up-fork. In the example, Fig-
ure 9(a), the list of M is searched and labels IL and IR found. If no
such up-fork exists, then the down-fork is non-essential. In this
case, the highest valued local minimum is selected from the list.
In the example of Figure 8(c), no essential up-forks are found for
C, and the largest local minimum, B is selected.

6.2 Virtual Edges for Propagate and Pair

This propagate and pair approach succeeds in most case, but in certain
cases, such as in Figure 10(a), it fails. The failure arises from the
assumption that the superlevel set is the only thing needed to propagate
labels. In this case, label information needs to be communicated be-
tween E and F , which are connected by the node D in the sublevel set.
To resolve this communication issue, virtual edges are used. Virtual

edges have 3 associated operations.

Creation. Virtual edges are created on all up-fork operations. For
example in Figure 10(b), when processing B, the endpoints of the fork,
E and F are connected with virtual edge VB. Similarly, in Figure 10(c),
when processing up-fork D, another virtual edge VD is created connect-
ing the endpoint, E and F .

Label Propagation. Propagating labels across virtual edges is similar
to standard propagation with one additional condition. A label can only
be propagated if its value is less than that of the up-fork that generated
the virtual edge. In other words, for a given label X and a virtual edge
VY , X is only propagated if f (X)< f (Y). Looking at the example in
Figure 10(d), for the virtual edge VB, only A is propagated because
f (A)< f (B). For the virtual edge VD, A, BL, and C are all propagated,
since they all have values smaller than D.

Virtual Edge Propagation. Finally, virtual edges themselves need
to be propagated. For all critical points, any virtual edge endpoint
attached to that critical point is propagated up outgoing edges. In the
simple case of down-forks, the edge just gets pushed up, as we see
in Figure 10(e). In the case of up-forks with virtual edges, additional
virtual edges are created by the splitting action. During this virtual
edge propagation phase, redundant virtual edges can also be culled. For
example, the virtual edge VD is a superlevel set of VB. Therefore, VB
can be discarded.

The necessity of the virtual edge process can also be seen in Figure 8.
In Figure 8(l), the pairing of L with D is only possible because of the
virtual edge created by I in Figure 8(i).

A

B

D

C

G
H

E

F

(a) Failure case for basic
propagate and pair

A

B

D

C

G
H

(b) Virtual edge cre-
ated by B

A

B

D

C

G
H

(c) Virtual edge cre-
ated by D

A

B

D

C

G
H

(d) Virtual edge label
propagation

A

B

D

C

G
H

E

(e) Virtual edge prop-
agation

Fig. 10. (a) An example case of where the basic propagate and pair
algorithm fails. In this case, B and F should pair but will not. To overcome
this limitation, (b-c) virtual edges are created as up-forks are processed.
(d) Labels can then be propagated across virtual edges. (e) The virtual
edges themselves are propagated and redundant edges removed.

7 EVALUATION

We have implemented the described algorithms using Java. The source
code will be made public upon publication of this manuscript. Reported
performance was calculated on a 2017 MacBook Pro, 3.1 Ghz i5 CPU.
Both the multipass and single-pass algorithms have worst case O(nt)
performance, where n is the number of nodes in the Reeb graph, and t
is the number of up-forks.

We investigate the real performance of the algorithms using the Reeb
graph from Figures 1 and 2, synthetically generated Reeb graphs in
Figure 11, Reeb graphs calculated on publicly available meshes in
Figure 12, and time-series of 120 Mapper graphs taken from the 2016
SciVis Contest in Figure 13.

7

(a) random tree 100 (b) random tree 500 (c) random tree 1000 (d) random tree 3000 (e) random tree 5000

(f) random graph 100 (g) random graph 500 (h) random graph 1000 (i) random graph 3000 (j) random graph 5000

Fig. 11. Persistence diagrams for random trees (top) and random graphs (bottom). The number indicates how many random iterations were used to
generate the example. The Dg0(f) and ExDg1(f) have been combined into a single diagram with Dg0(f) in red and ExDg1(f) in blue.

Table 1. Performance for the datasets tested. Bold indicates the faster algorithm.

Data Figure Mesh Reeb Graph Nodes Cycles Multipass Single-pass
Vertices Faces Initial Conditioned Time (ms) Time (ms)

running example 1 / 2 — — 16 16 3 1.06e-02 5.06e-03
random tree 100 11(a) — — 401 204 0 2.26e-02 6.63e-02
random tree 500 11(b) — — 2001 1004 0 0.13 1.62
random tree 1000 11(c) — — 4001 2004 0 0.28 6.42
random tree 3000 11(d) — — 12001 6004 0 1.05 84.72
random tree 5000 11(e) — — 20001 10004 0 1.94 301.68
random graph 100 11(f) — — 401 112 46 1.81e-02 1.42e-02
random graph 500 11(g) — — 2001 542 231 0.48 1.84
random graph 1000 11(h) — — 4001 1010 497 0.53 1.32
random graph 3000 11(i) — — 12001 3014 1495 1.63 3.95
random graph 5000 11(j) — — 20001 5204 2400 14.98 148.10
4 torus 12(c) 10401 20814 23 10 4 1.16e-03 5.61e-04
buddah 12(d) 10098 20216 33 14 6 1.44e-03 6.65e-04
david 12(f) 26138 52284 8 8 3 8.17e-04 3.44e-04
double torus 12(a) 3070 6144 13 6 2 4.87e-04 2.11e-04
female 12(b) 8410 16816 15 8 0 1.63e-03 1.82e-04
flower 12(g) 4000 8256 132 132 65 2.63e-02 2.08e-02
greek 12(h) 39994 80000 23 10 4 8.09e-04 3.23e-04
topology 12(e) 6616 13280 28 28 13 4.19e-03 3.09e-03
scivis contest 2016 13 194k (avg) — 117 (avg) 178.2 (avg) 81.3 (avg) 3.76 (total) 2.88 (total)

The synthetic Reeb graphs were generated by a Python script. Given
a positive integer n, the script starts by creating a fork G1 consisting
of a node with valency 3 and three nodes with valency 1 linked to the
3-valence node. For each iteration i < n, another fork is generated, and
one or two of its one valency nodes are glued to the nodes in Gi−1 with
valency one. If we constrain the choice of gluing a single node at each
iteration the resulting graph will be a contour tree. The mesh data are
provided by AIM@SHAPE Shape Repository. Reeb graphs of the mesh
data were extracted using our own Reeb graph implementation in C++.
The 2016 SciVis Contest data1 is a large time-varying multi-run particle
simulation. Our evaluation took one realization, smoothing length 0.44,
run 50, and calculated the Mapper graph for all 120 time-steps of the

1https://www.uni-kl.de/sciviscontest/

variable of interest, concentration. Our included video shows the entire
sequence. The Mapper graph was generated using a Python script that
follows the generic Mapper algorithm [33].

The performance for the algorithms can be seen in Table 1. These
values were obtained by running the test 1000 times and storing the aver-
age compute time. The persistence diagrams of both the single-pass and
multipass algorithms were compared in order to verify correctness. For
all synthetic examples but one, the multipass algorithm outperformed
the single-pass algorithm. In all other cases (i.e., the running example,
all mesh examples, and scivis contest 2016), the single-pass algorithm
outperformed the multipass algorithm, albeit by a small amount. We
had originally hypothesized that the performance between algorithms
would be similar with a slight edge to the single-pass version. Further
investigation is required into the precise cause of slowdown in the syn-

8

h

(a) double torus (b) female

(c) 4 torus (d) buddah

(e) topology (f) david

(g) flower (h) greek

Fig. 12. Meshes, Reeb graphs, ad persistence diagrams for datasets used in evaluation. The mesh is colored by the scalar function applied to it. The
Dg0(f) and ExDg1(f) have been combined into a single diagram with Dg0(f) in red and ExDg1(f) in blue.

Fig. 13. One timestep (066) from the scivis contest 2016 data. The
spatial data with concentration mapped to the color channel is shown
(left) along with the combined persistence diagram for the Mapper graph
(right). The Dg0(f) is in red, and the ExDg1(f) is in blue.

thetic cases, but we believe it has to do with the cost and effects of the
large number of virtual edges.

8 CONCLUSION

Pairing critical points is a key part of the TDA pipeline—the Reeb
graphs capture complex structure, but direct representation is often im-
practical. Critical point pairing enables a compact visual representation
in the form of a persistence diagram. Although previous works have
laid out high-level descriptions of essential critical point pairing, none
have previously provided an algorithm. Our approach leverages merge
trees to provide both intuitive and efficient single-pass and multipass
algorithms that can pair critical points in Reeb graphs, Mapper graphs,
contour trees, join trees, and split trees.

ACKNOWLEDGMENTS

This work was supported in part by a grant from XYZ (# 12345-67890).
Our mesh data are provided by AIM@SHAPE Shape Repository

9

REFERENCES

[1] P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang. Extreme elevation
on a 2-manifold. Discrete & Computational Geometry, 36(4):553–572,
2006.

[2] M. Attene, S. Biasotti, and M. Spagnuolo. Shape understanding by contour-
driven retiling. The Visual Computer, 19(2):127–138, 2003.

[3] C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum. In
Proceedings of the 8th IEEE Visualization, pp. 167–ff, 1997.

[4] U. Bauer, X. Ge, and Y. Wang. Measuring distance between reeb graphs.
In Proceedings of the thirtieth annual symposium on Computational ge-
ometry, p. 464. ACM, 2014.

[5] P. J. Besl and N. D. McKay. Method for registration of 3-d shapes. In
Robotics-DL tentative, pp. 586–606. International Society for Optics and
Photonics, 1992.

[6] S. Biasotti, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, S. Marini,
G. Patané, and M. Spagnuolo. 3d shape description and matching based
on properties of real functions. In Eurographics (Tutorials), pp. 949–998,
2007.

[7] R. L. Boyell and H. Ruston. Hybrid techniques for real-time radar simu-
lation. In Proceedings of the November 12-14, 1963, fall joint computer
conference, pp. 445–458. ACM, 1963.

[8] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimen-
sions. Computational Geometry: Theory and Applications, 24(2):75–94,
2003. doi: 10.1016/S0925-7721(02)00093-7

[9] H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible isosurfaces
using local geometric measures. Proceedings 15th IEEE Visualization, pp.
497–504, 2004.

[10] F. Chazal and S. Y. Oudot. Towards persistence-based reconstruction in
euclidean spaces. In Proceedings of the twenty-fourth annual symposium
on Computational geometry, pp. 232–241. ACM, 2008.

[11] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pas-
cucci. Loops in reeb graphs of 2-manifolds. In SCG ’03: Proceedings of
the nineteenth annual symposium on Computational geometry, pp. 344–
350. ACM, New York, NY, USA, 2003. doi: 10.1145/777792.777844

[12] T. K. Dey and K. Li. Cut locus and topology from surface point data.
In Proceedings of the twenty-fifth annual symposium on Computational
geometry, pp. 125–134. ACM, 2009.

[13] T. K. Dey, J. Sun, and Y. Wang. Approximating cycles in a shortest
basis of the first homology group from point data. Inverse Problems,
27(12):124004, 2011.

[14] H. Doraiswamy and V. Natarajan. Efficient output-sensitive construction of
reeb graphs. In International Symposium on Algorithms and Computation,
pp. 556–567. Springer, 2008.

[15] H. Doraiswamy and V. Natarajan. Efficient algorithms for computing reeb
graphs. Computational Geometry, 42(6):606–616, 2009.

[16] H. Doraiswamy and V. Natarajan. Computing reeb graphs as a union of
contour trees. IEEE Transactions on Visualization and Computer Graphics,
19(2):249–262, 2013. doi: 10.1109/TVCG.2012.115

[17] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci. Time-varying
reeb graphs for continuous space-time data. In Proceedings of the twentieth
annual symposium on Computational geometry, pp. 366–372. ACM, 2004.

[18] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persis-
tence and simplification. In Foundations of Computer Science, 2000.
Proceedings. 41st Annual Symposium on, pp. 454–463. IEEE, 2000.

[19] X. Ge, I. I. Safa, M. Belkin, and Y. Wang. Data skeletonization via
reeb graphs. In Advances in Neural Information Processing Systems, pp.
837–845, 2011.

[20] S. K. Gupta, W. C. Regli, and D. S. Nau. Manufacturing feature instances:
which ones to recognize? In Proceedings of the third ACM symposium on
Solid modeling and applications, pp. 141–152. ACM, 1995.

[21] W. Harvey, Y. Wang, and R. Wenger. A randomized O (m log m) time
algorithm for computing Reeb graphs of arbitrary simplicial complexes.
Proceedings of the twenty-sixth annual symposium on Computational
geometry, pp. 267–276, 2010. doi: 10.1145/1810959.1811005

[22] M. Hilaga and Y. Shinagawa. Topology matching for fully automatic simi-
larity estimation of 3D shapes. Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pp. 203–212, 2001. doi:
10.1145/383259.383282

[23] I. S. Kweon and T. Kanade. Extracting topographic terrain features from
elevation maps. CVGIP: image understanding, 59(2):171–182, 1994.

[24] E. Munch. A users guide to topological data analysis. Journal of Learning
Analytics, 4(2):47–61, 2017.

[25] M. Natali, S. Biasotti, G. Patanè, and B. Falcidieno. Graph-based repre-
sentations of point clouds. Graphical Models, 73(5):151–164, 2011.

[26] S. Parsa. A deterministic O(m logm) time algorithm for the Reeb graph.
In ACM Sympos. Comput. Geom. (SoCG), pp. 269–276, 2012.

[27] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-resolution com-
putation and presentation of contour trees. In Proc. IASTED Conference
on Visualization, Imaging, and Image Processing, pp. 452–290, 2004.

[28] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust on-
line computation of Reeb graphs: Simplicity and speed. ACM Transactions
on Graphics, 26(3):58.1–58.9, 2007.

[29] G. Reeb. Sur les points singuliers dune forme de pfaff completement
intgrable ou dune fonction numrique. CR Acad. Sci. Paris, 222:847–849,
1946.

[30] M. Reuter. Hierarchical shape segmentation and registration via topologi-
cal features of laplace-beltrami eigenfunctions. International Journal of
Computer Vision, 89(2-3):287–308, 2010.

[31] P. Rosen, B. Wang, A. Seth, B. Mills, A. Ginsburg, J. Kamenetzky, J. Kern,
and C. R. Johnson. Using contour trees in the analysis and visualization
of radio astronomy data cubes. arXiv preprint arXiv:1704.04561, 2017.

[32] Y. Shinagawa and T. L. Kunii. Constructing a reeb graph automatically
from cross sections. IEEE Computer Graphics and Applications, 11(6):44–
51, 1991.

[33] G. Singh, F. Mémoli, and G. E. Carlsson. Topological methods for the
analysis of high dimensional data sets and 3d object recognition. In
Eurographics Symposium on Point-Based Graphics, pp. 91–100, 2007.

[34] P. Skraba, M. Ovsjanikov, F. Chazal, and L. Guibas. Persistence-based
segmentation of deformable shapes. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.
45–52. IEEE, 2010.

[35] S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skele-
tonization and its application to transfer function design. Graphical Mod-
els, 66(1):24–49, 2004.

[36] J. Tierny, J. P. Vandeborre, and M. Daoudi. Partial 3D shape retrieval by
Reeb pattern unfolding. Computer Graphics Forum, 28(1):41–55, 2009.
doi: 10.1111/j.1467-8659.2008.01190.x

[37] T. Várady, M. A. Facello, and Z. Terék. Automatic extraction of sur-
face structures in digital shape reconstruction. Computer-Aided Design,
39(5):379–388, 2007.

[38] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann. Topology-
controlled volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 13(2):330–341, 2007. doi: 10.1109/TVCG.2007.47

[39] G. H. Weber and G. Scheuermann. Topology-based transfer function
design. In Proceedings of the second IASTED international conference on
visualization, imaging, and image processing, pp. 527–532, 2002.

[40] L. Xie and P. E. Bourne. A robust and efficient algorithm for the shape
description of protein structures and its application in predicting ligand
binding sites. In BMC bioinformatics, vol. 8, p. S9. BioMed Central, 2007.

10

View publication statsView publication stats

https://www.researchgate.net/publication/326208667

	Introduction
	Reeb Graph
	Persistent Homology and Persistence Diagram
	Persistence Diagram of Reeb Graph

	Related Work
	Conditioning the Graph
	Multipass Approach
	Non-Essential Fork Pairing
	Essential Forks Pairing

	Single-Pass Algorithm: Propagate and Pair
	Basic Propagate and Pair
	Virtual Edges for Propagate and Pair

	Evaluation
	Conclusion

