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Cutting Graph

A cut graph G of a mesh M consists of a set of edges of M such that M/G is a simply connected mesh (topological disk).
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Cutting Graph

On a cutting graph G we locate the Branching vertices



Cutting Graph

A segment in a cutting graph G is a set of consecutive edges in G, which connect two branching 
vertices. 



Cutting Graph

A segment in a cutting graph G is a set of consecutive edges in G, which connect two branching 
vertices. 

Namely the branching vertices separate the cut graph into a collection of segments.



Cutting Graph
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We give each segment an arbitrary orientation and denote the oriented segments by S={s₁,...,sn}



Computing the fundamental domain



The universal cover and the fundamental domain



Computing the fundamental domain

Input : A mesh M     
Output : A fundamental domain D of M      

• Compute a cut graph G of M  
• Slice M along G



The universal cover and the fundamental domain
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Constructing the universal cover

Input : A mesh Σ.
Output: A finite portion of the universal cover Σ¯.
1 Compute a cut graph G of Σ. 
We call a vertex on G with valence greater than 2 a Branching vertex. The Branching vertices
divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}. 

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk ’s. 

3 Initialize Σ¯ ← D, book keep ∂Σ¯ using ±sk ’s. 

4 Glue a copy of D to current Σ¯ along only one segment sk ∈ ∂Σ¯, −sk ∈ ∂D, Σ¯ ← Σ¯ ∪sk D. 

5 Update ∂Σ¯, if ±si are adjacent in ∂Σ¯, glue the boundary of Σ¯ along si . Repeat this step 
until no adjacent ±si in the boundary. 

6 Repeat gluing the copies of Σ˜ until Σ¯ is large enough. 



Constructing the universal cover

Input : A mesh Σ.
Output: A finite portion of the universal cover Σ¯.
1 Compute a cut graph G of Σ. 
We call a vertex on G with valence greater than 2 a Branching vertex. The Branching vertices
divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}. 

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk ’s. 

3 Initialize Σ¯ ← D, book keep ∂Σ¯ using ±sk ’s. 

4 Glue a copy of D to current Σ¯ along only one segment sk ∈ ∂Σ¯, −sk ∈ ∂D, Σ¯ ← Σ¯ ∪sk D. 

5 Update ∂Σ¯, if ±si are adjacent in ∂Σ¯, glue the boundary of Σ¯ along si . Repeat this step 
until no adjacent ±si in the boundary. 

6 Repeat gluing the copies of Σ˜ until Σ¯ is large enough. 



Constructing the universal cover

Input : A mesh Σ.
Output: A finite portion of the universal cover Σ¯.
1 Compute a cut graph G of Σ. 
We call a vertex on G with valence greater than 2 a Branching vertex. The Branching vertices
divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}. 

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk ’s. 

3 Initialize Σ¯ ← D, book keep ∂Σ¯ using ±sk ’s. 

4 Glue a copy of D to current Σ¯ along only one segment sk ∈ ∂Σ¯, −sk ∈ ∂D, Σ¯ ← Σ¯ ∪sk D. 

5 Update ∂Σ¯, if ±si are adjacent in ∂Σ¯, glue the boundary of Σ¯ along si . Repeat this step 
until no adjacent ±si in the boundary. 

6 Repeat gluing the copies of Σ˜ until Σ¯ is large enough. 



Constructing the universal cover

Input : A mesh Σ.
Output: A finite portion of the universal cover Σ¯.
1 Compute a cut graph G of Σ. 
We call a vertex on G with valence greater than 2 a Branching vertex. The Branching vertices
divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}. 

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk ’s. 

3 Initialize Σ¯ ← D, book keep ∂Σ¯ using ±sk ’s. 

4 Glue a copy of D to current Σ¯ along only one segment sk ∈ ∂Σ¯, −sk ∈ ∂D, Σ¯ ← Σ¯ ∪sk D. 

5 Update ∂Σ¯, if ±si are adjacent in ∂Σ¯, glue the boundary of Σ¯ along si . Repeat this step 
until no adjacent ±si in the boundary. 

6 Repeat gluing the copies of Σ˜ until Σ¯ is large enough. 



Constructing the universal cover

Input : A mesh Σ.
Output: A finite portion of the universal cover Σ¯.
1 Compute a cut graph G of Σ. 
We call a vertex on G with valence greater than 2 a Branching vertex. The Branching vertices
divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}. 

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk ’s. 

3 Initialize Σ¯ ← D, book keep ∂Σ¯ using ±sk ’s. 

4 Glue a copy of D to current Σ¯ along only one segment sk ∈ ∂Σ¯, −sk ∈ ∂D, Σ¯ ← Σ¯ ∪sk D. 

5 Update ∂Σ¯, if ±si are adjacent in ∂Σ¯, glue the boundary of Σ¯ along si . Repeat this step 
until no adjacent ±si in the boundary. 

6 Repeat gluing the copies of Σ˜ until Σ¯ is large enough. 



Constructing the universal cover

Input : A mesh Σ.
Output: A finite portion of the universal cover Σ¯.
1 Compute a cut graph G of Σ. 
We call a vertex on G with valence greater than 2 a Branching vertex. The Branching vertices
divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}. 

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk ’s. 

3 Initialize Σ¯ ← D, book keep ∂Σ¯ using ±sk ’s. 

4 Glue a copy of D to current Σ¯ along only one segment sk ∈ ∂Σ¯, −sk ∈ ∂D, Σ¯ ← Σ¯ ∪sk D. 

5 Update ∂Σ¯, if ±si are adjacent in ∂Σ¯, glue the boundary of Σ¯ along si . Repeat this step 
until no adjacent ±si in the boundary. 

6 Repeat gluing the copies of Σ˜ until Σ¯ is large enough. 



Constructing the universal cover

Input : A mesh Σ.
Output: A finite portion of the universal cover Σ¯.
1 Compute a cut graph G of Σ. 
We call a vertex on G with valence greater than 2 a Branching vertex. The Branching vertices
divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}. 

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk ’s. 

3 Initialize Σ¯ ← D, book keep ∂Σ¯ using ±sk ’s. 

4 Glue a copy of D to current Σ¯ along only one segment sk ∈ ∂Σ¯, −sk ∈ ∂D, Σ¯ ← Σ¯ ∪sk D. 

5 Update ∂Σ¯, if ±si are adjacent in ∂Σ¯, glue the boundary of Σ¯ along si . Repeat this step 
until no adjacent ±si in the boundary. 

6 Repeat gluing the copies of D until Σ¯ is large enough. 



Constructing the universal cover
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Constructing the universal cover
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Curve lifting

A curve in the original surface can be lifted to the universal covering space
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Curve lifting

A curve in the original surface can be lifted to the universal covering space

A closed non-trivial loop can be lifted to an open path in the universal covering space

Key idea : many topological 
problems can be solved on 
the universal cover easier 
than on the original 
surface.
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Homotopic curves

Homotopy detection

Non-homotopic curves
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Homotopy detection

Non-homotopic curves
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Homotopy detection
Homotopically trivial 
loops are lifted to closed 
loops in the covering 
space.



Homotopy detection
Homotopically non-trivial 
loops are lifted to open 
curves in the covering 
space.
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Homotopy detection
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