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A cut graph G of a mesh M consists of a set of edges of M such that M/G is a simply connected mesh (topological disk).



Cutting Graph

On a cutting graph G we locate the Branching vertices
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A segment in a cutting graph G is a set of consecutive edges in G, which connect two branching
vertices.



Cutting Graph

A segment in a cutting graph G is a set of consecutive edges in G, which connect two branching
vertices.

Namely the branching vertices separate the cut graph into a collection of segments.



Cutting Graph

We give each segment an arbitrary orientation and denote the oriented segments by S={ss,...,sn}
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Computing the fundamental domain

A closed~ subs;t D of the universal cover M of M is called a fundamental
domain of M if M is the union of conjugates of D




The universal cover and the fundamental domain

St
-




Computing the fundamental domain

Input : A mesh M
Output : A fundamental domain D of M

Compute a cut graph G of M
Slice M along G
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Constructing the universal cover

Input : A mesh 2.
Output: A finite portion of the universal cover 2.
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until no adjacent xsi in the boundary.



Constructing the universal cover

Input : A mesh 2.

Output: A finite portion of the universal cover 2.

1 Compute a cut graph G of 2.

We call a vertex on G with valence greater than 2 a Branching vertex. The Branching vertices
divide G to segments, assign an orientation to each segment, labeled as {s1, s2, - - -, sn}.

2 Slice 2 along G to get a fundamental domain D, the boundary is composed of +sk ’s.
3 Initialize 2~ <& D, book keep 02~ using +sk ’s.
4 Glue a copy of D to current 2™ along only one segment sk € 027, -sk € 0D, 2™ < 2™ Usk D.

5 Update 027, if £si are adjacent in 027, glue the boundary of 2™ along si . Repeat this step
until no adjacent xsi in the boundary.

6 Repeat gluing the copies of D until 2™ is large enough.



Constructing the universal cover
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Constructing the universal cover
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Curve lifting

A curve in the original surface can be lifted to the universal covering space
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Curve lifting

A curve in the original surface can be lifted to the universal covering space

A closed non-trivial loop can be lifted to an open path in the universal covering space

)

Key idea : many topological
problems can be solved on
the universal cover easier
than on the original
surface.
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Curve lifting

1-Suppose that v is a closed loop in M represented as a list of consecutive
half-edges : {[v1, v2], ...[Un—1,0n], [Un, v1]}. i

2-Denote by M to the universal cover of M and by @ : M — M is the
projection. Locally this projection is one-to-one.

3-Locale a pre-image o, € M such that 7(¢1) = vy

4-Denote the one ring neighborhoods of ©; and v; by N(9;) and N(v;)
respectively. The map 7:N(01) — N(vy) is bijection.

5- Hence we can uniquely local the pre-image of vo in N(9y), 0s.

6-Then we can uniquely local the pre-image of vz in N(79), 03.

7-We continue this process step by step.

8-At the k-th step we can uniquely local the pre-image of vy in N(0y), vk,
until we reach v; again.
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Homotopy detection

Homotopically trivial
loops are lifted to closed
loops in the covering
space.




Homotopy detection

Homotopically non-trivial
loops are lifted to open
curves in the covering
space.
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Homotopy detection

Input : A mesh M, two chains v, and 7,
Output: Whether v, is homotopic to v,
1- represent 7, by a circular list of vertices

{vy,...,vn}

2- represent v, by a circular list of vertices

{w1,y ey Wiy }

3-use the Dijkstra’s algorithm to compute a shortest path connecting v; and

wy iy = {v1,dq, ..., di, wr }

4-Construct I' = ~. o v o 72—1 o~~L

I' = {Ula wery Un, U1, dla L) dkawla Wm, ---, W1, dka s dl:wl}

5-Construct a finite portion of the universal cover. )
6-Left I' to the universal cover and obtain the curve I'. If I' is a loop then
71 is homotopic to v,. Otherwise, they are not homotopic.
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