Topological Algorithms-II

Mustafa Hajij

On a cutting graph G we locate the *Branching vertices*

A *segment* in a cutting graph G is a set of consecutive edges in G, which connect two branching vertices.

A *segment* in a cutting graph G is a set of consecutive edges in G, which connect two branching vertices.

Namely the branching vertices separate the cut graph into a collection of segments.

We give each segment an arbitrary orientation and denote the oriented segments by S={s₁,...,sn}

Computing the fundamental domain

A closed subset D of the universal cover \tilde{M} of M is called a fundamental domain of \tilde{M} if \tilde{M} is the union of conjugates of D

The universal cover and the fundamental domain

Computing the fundamental domain

Input : A mesh M Output : A fundamental domain D of M

- Compute a cut graph G of M
- Slice M along G

The universal cover and the fundamental domain

S1	S2
S3	-S3
-S1	-S2

S1	S2
S3	-S3
-S1	-S2

Input : A mesh Σ . Output: A finite portion of the universal cover Σ^- .

Input : A mesh Σ .

Output: A finite portion of the universal cover Σ^{-} .

1 Compute a cut graph G of Σ .

We call a vertex on G with valence greater than 2 a *Branching vertex*. The *Branching vertices* divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}.

Input : A mesh Σ .

Output: A finite portion of the universal cover Σ^{-} .

1 Compute a cut graph G of Σ .

We call a vertex on G with valence greater than 2 a *Branching vertex*. The *Branching vertices* divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}.

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk 's.

Input : A mesh Σ .

Output: A finite portion of the universal cover Σ^{-} .

1 Compute a cut graph G of Σ .

We call a vertex on G with valence greater than 2 a *Branching vertex*. The *Branching vertices* divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}.

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk 's.

3 Initialize $\Sigma^- \leftarrow D$, book keep $\partial \Sigma^-$ using ±sk 's.

Input : A mesh Σ .

Output: A finite portion of the universal cover Σ^{-} .

1 Compute a cut graph G of Σ .

We call a vertex on G with valence greater than 2 a *Branching vertex*. The *Branching vertices* divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}.

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk 's.

3 Initialize $\Sigma^- \leftarrow D$, book keep $\partial \Sigma^-$ using ±sk 's.

4 Glue a copy of D to current Σ^- along only one segment sk $\in \partial \Sigma^-$, $-sk \in \partial D$, $\Sigma^- \leftarrow \Sigma^- \cup_{sk} D$.

Input : A mesh Σ .

Output: A finite portion of the universal cover Σ^{-} .

1 Compute a cut graph G of Σ .

We call a vertex on G with valence greater than 2 a *Branching vertex*. The *Branching vertices* divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}.

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk 's.

3 Initialize $\Sigma^- \leftarrow D$, book keep $\partial \Sigma^-$ using ±sk 's.

4 Glue a copy of D to current Σ^- along only one segment sk $\in \partial \Sigma^-$, $-sk \in \partial D$, $\Sigma^- \leftarrow \Sigma^- \cup_{sk} D$.

5 Update $\partial \Sigma^-$, if ±si are adjacent in $\partial \Sigma^-$, glue the boundary of Σ^- along si. Repeat this step until no adjacent ±si in the boundary.

Input : A mesh Σ .

Output: A finite portion of the universal cover Σ^{-} .

1 Compute a cut graph G of Σ .

We call a vertex on G with valence greater than 2 a *Branching vertex*. The *Branching vertices* divide G to segments, assign an orientation to each segment, labeled as {s1, s2, · · · , sn}.

2 Slice Σ along G to get a fundamental domain D, the boundary is composed of ±sk 's.

3 Initialize $\Sigma^- \leftarrow D$, book keep $\partial \Sigma^-$ using ±sk 's.

4 Glue a copy of D to current Σ^- along only one segment sk $\in \partial \Sigma^-$, $-sk \in \partial D$, $\Sigma^- \leftarrow \Sigma^- \cup_{sk} D$.

5 Update $\partial \Sigma^-$, if ±si are adjacent in $\partial \Sigma^-$, glue the boundary of Σ^- along si. Repeat this step until no adjacent ±si in the boundary.

6 Repeat gluing the copies of D until Σ^- is large enough.

Input mesh

Fundamental domain

Finite portion of the universal cover

Image :David Gu

Image :David Gu

A curve in the original surface can be lifted to the universal covering space

A curve in the original surface can be lifted to the universal covering space

A closed non-trivial loop can be lifted to an open path in the universal covering space

A curve in the original surface can be lifted to the universal covering space

A closed non-trivial loop can be lifted to an open path in the universal covering space

A curve in the original surface can be lifted to the universal covering space

A closed non-trivial loop can be lifted to an open path in the universal covering space

Key idea : many topological problems can be solved on the universal cover easier than on the original surface.

Curve lifting

1-Suppose that γ is a closed loop in M represented as a list of consecutive half-edges : $\{[v_1, v_2], ... [v_{n-1}, v_n], [v_n, v_1]\}$.

1-Suppose that γ is a closed loop in M represented as a list of consecutive half-edges : $\{[v_1, v_2], ... [v_{n-1}, v_n], [v_n, v_1]\}$.

2-Denote by M to the universal cover of M and by $\pi : M \to M$ is the projection. Locally this projection is one-to-one.

1-Suppose that γ is a closed loop in M represented as a list of consecutive half-edges : $\{[v_1, v_2], ... [v_{n-1}, v_n], [v_n, v_1]\}$.

2-Denote by M to the universal cover of M and by $\pi : M \to M$ is the projection. Locally this projection is one-to-one.

3-Locale a pre-image $\hat{v}_1 \in \tilde{M}$ such that $\pi(\hat{v}_1) = v_1$

1-Suppose that γ is a closed loop in M represented as a list of consecutive half-edges : $\{[v_1, v_2], ... [v_{n-1}, v_n], [v_n, v_1]\}$.

2-Denote by M to the universal cover of M and by $\pi : M \to M$ is the projection. Locally this projection is one-to-one.

3-Locale a pre-image $\hat{v}_1 \in M$ such that $\pi(\hat{v}_1) = v_1$

4-Denote the one ring neighborhoods of \hat{v}_1 and v_1 by $N(\hat{v}_1)$ and $N(v_1)$ respectively. The map $\pi: N(\hat{v}_1) \to N(v_1)$ is bijection.

1-Suppose that γ is a closed loop in M represented as a list of consecutive half-edges : $\{[v_1, v_2], ... [v_{n-1}, v_n], [v_n, v_1]\}$.

2-Denote by M to the universal cover of M and by $\pi : M \to M$ is the projection. Locally this projection is one-to-one.

3-Locale a pre-image $\hat{v}_1 \in M$ such that $\pi(\hat{v}_1) = v_1$

4-Denote the one ring neighborhoods of \hat{v}_1 and v_1 by $N(\hat{v}_1)$ and $N(v_1)$ respectively. The map $\pi: N(\hat{v}_1) \to N(v_1)$ is bijection.

5- Hence we can uniquely local the pre-image of v_2 in $N(\hat{v}_1)$, \hat{v}_2 .

1-Suppose that γ is a closed loop in M represented as a list of consecutive half-edges : $\{[v_1, v_2], ... [v_{n-1}, v_n], [v_n, v_1]\}$.

2-Denote by M to the universal cover of M and by $\pi : M \to M$ is the projection. Locally this projection is one-to-one.

3-Locale a pre-image $\hat{v}_1 \in \tilde{M}$ such that $\pi(\hat{v}_1) = v_1$

4-Denote the one ring neighborhoods of \hat{v}_1 and v_1 by $N(\hat{v}_1)$ and $N(v_1)$ respectively. The map $\pi: N(\hat{v}_1) \to N(v_1)$ is bijection.

5- Hence we can uniquely local the pre-image of v_2 in $N(\hat{v}_1)$, \hat{v}_2 . 6-Then we can uniquely local the pre-image of v_3 in $N(\hat{v}_2)$, \hat{v}_3 .

1-Suppose that γ is a closed loop in M represented as a list of consecutive half-edges : $\{[v_1, v_2], ... [v_{n-1}, v_n], [v_n, v_1]\}$.

2-Denote by M to the universal cover of M and by $\pi : M \to M$ is the projection. Locally this projection is one-to-one.

3-Locale a pre-image $\hat{v}_1 \in \tilde{M}$ such that $\pi(\hat{v}_1) = v_1$

4-Denote the one ring neighborhoods of \hat{v}_1 and v_1 by $N(\hat{v}_1)$ and $N(v_1)$ respectively. The map $\pi: N(\hat{v}_1) \to N(v_1)$ is bijection.

5- Hence we can uniquely local the pre-image of v_2 in $N(\hat{v}_1)$, \hat{v}_2 . 6-Then we can uniquely local the pre-image of v_3 in $N(\hat{v}_2)$, \hat{v}_3 . 7-We continue this process step by step.

1-Suppose that γ is a closed loop in M represented as a list of consecutive half-edges : $\{[v_1, v_2], ... [v_{n-1}, v_n], [v_n, v_1]\}$.

2-Denote by M to the universal cover of M and by $\pi : M \to M$ is the projection. Locally this projection is one-to-one.

3-Locale a pre-image $\hat{v}_1 \in \tilde{M}$ such that $\pi(\hat{v}_1) = v_1$

4-Denote the one ring neighborhoods of \hat{v}_1 and v_1 by $N(\hat{v}_1)$ and $N(v_1)$ respectively. The map $\pi: N(\hat{v}_1) \to N(v_1)$ is bijection.

5- Hence we can uniquely local the pre-image of v_2 in $N(\hat{v}_1)$, \hat{v}_2 . 6 Then we can uniquely local the pre-image of v_2 in $N(\hat{v}_1)$, \hat{v}_2 .

6-Then we can uniquely local the pre-image of v_3 in $N(\hat{v}_2)$, \hat{v}_3 .

7-We continue this process step by step.

8-At the k-th step we can uniquely local the pre-image of v_k in $N(\hat{v}_k)$, \hat{v}_k , until we reach v_1 again.

Non-homotopic curves

Homotopic curves

Image :David Gu

Non-homotopic curves

Homotopic curves

Image :David Gu

Homotopically trivial loops are lifted to closed loops in the covering space.

Homotopically non-trivial loops are lifted to open curves in the covering space.

Input : A mesh M, two chains γ_1 and γ_2 Output: Whether γ_1 is homotopic to γ_2

Input : A mesh M, two chains γ_1 and γ_2 Output: Whether γ_1 is homotopic to γ_2 1- represent γ_1 by a circular list of vertices

 $\{v_1, ..., v_n\}$

Input : A mesh M, two chains γ_1 and γ_2 Output: Whether γ_1 is homotopic to γ_2 1- represent γ_1 by a circular list of vertices

$\{v_1, ..., v_n\}$

2- represent γ_2 by a circular list of vertices

 $\{w_1,...,w_m\}$

Input : A mesh M, two chains γ_1 and γ_2 Output: Whether γ_1 is homotopic to γ_2 1- represent γ_1 by a circular list of vertices

$\{v_1, ..., v_n\}$

2- represent γ_2 by a circular list of vertices

$\{w_1, ..., w_m\}$

3-use the Dijkstra's algorithm to compute a shortest path connecting v_1 and $w_1: \gamma = \{v_1, d_1, ..., d_k, w_1\}$

Input : A mesh M, two chains γ_1 and γ_2 Output: Whether γ_1 is homotopic to γ_2 1- represent γ_1 by a circular list of vertices

$\{v_1,...,v_n\}$

2- represent γ_2 by a circular list of vertices

 $\{w_1, ..., w_m\}$

3-use the Dijkstra's algorithm to compute a shortest path connecting v_1 and $w_1 : \gamma = \{v_1, d_1, ..., d_k, w_1\}$ 4-Construct $\Gamma = \gamma_1 \circ \gamma \circ \gamma_2^{-1} \circ \gamma^{-1}$

Input : A mesh M, two chains γ_1 and γ_2 Output: Whether γ_1 is homotopic to γ_2 1- represent γ_1 by a circular list of vertices

$\{v_1,...,v_n\}$

2- represent γ_2 by a circular list of vertices

 $\{w_1, ..., w_m\}$

3-use the Dijkstra's algorithm to compute a shortest path connecting v_1 and $w_1 : \gamma = \{v_1, d_1, ..., d_k, w_1\}$ 4-Construct $\Gamma = \gamma_1 \circ \gamma \circ \gamma_2^{-1} \circ \gamma^{-1}$ $\Gamma = \{v_1, ..., v_n, v_1, d_1, ..., d_k, w_1, w_m, ..., w_1, d_k, ..., d_1, w_1\}$

Input : A mesh M, two chains γ_1 and γ_2 Output: Whether γ_1 is homotopic to γ_2 1- represent γ_1 by a circular list of vertices

$\{v_1,...,v_n\}$

2- represent γ_2 by a circular list of vertices

 $\{w_1,...,w_m\}$

3-use the Dijkstra's algorithm to compute a shortest path connecting v_1 and $w_1 : \gamma = \{v_1, d_1, ..., d_k, w_1\}$ 4-Construct $\Gamma = \gamma_1 \circ \gamma \circ \gamma_2^{-1} \circ \gamma^{-1}$ $\Gamma = \{v_1, ..., v_n, v_1, d_1, ..., d_k, w_1, w_m, ..., w_1, d_k, ..., d_1, w_1\}$

5-Construct a finite portion of the universal cover.

Input : A mesh M, two chains γ_1 and γ_2 Output: Whether γ_1 is homotopic to γ_2 1- represent γ_1 by a circular list of vertices

$\{v_1,...,v_n\}$

2- represent γ_2 by a circular list of vertices

 $\{w_1, ..., w_m\}$

3-use the Dijkstra's algorithm to compute a shortest path connecting v_1 and $w_1 : \gamma = \{v_1, d_1, ..., d_k, w_1\}$ 4-Construct $\Gamma = \gamma_1 \circ \gamma \circ \gamma_2^{-1} \circ \gamma^{-1}$ $\Gamma = \{v_1, ..., v_n, v_1, d_1, ..., d_k, w_1, w_m, ..., w_1, d_k, ..., d_1, w_1\}$

5-Construct a finite portion of the universal cover.

6-Left Γ to the universal cover and obtain the curve $\overline{\Gamma}$. If $\overline{\Gamma}$ is a loop then γ_1 is homotopic to γ_2 . Otherwise, they are not homotopic.

Algorithms presented here can be found in :

D. Gu and S Yau, Computational conformal geometry. Somerville, Mass, USA: International Press, 2008.