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Graph Laplacian

Let G be a graph on n nodes. The Graph Laplacian is an n by n matrix given by :

L=D-A
U1
Where D is the degree matrix and A is the adjacency matrix
v, Vs
U3
Vs
01 0 0 0] 1 0 0 0 O] 1 -1 0 0 0]
1 01 11 0 4 0 0 0 -1 4 -1 -1 -1
A=/0 1 0 1 0 D=0 0 2 0 0 L={0 -1 2 -1 0
01 1 0 1 00 0 3 0 0 -1 -1 3 -1
01 01 0 00 0 0 2] 0 -1 0 -1 2]




Symmetric Graph Laplacian

Lsyrﬂ . D—1/2LD—1/2 —J — D_I/ZA.D_I/z,

Explicitly this is given by:

(1 if i = j and deg(v;) # 0
1 s . . .
sym ) — if ¢ and v; is adjacent to v;
Lij =+ \/deg(w)deg(vj} 79 I : !
L0 otherwise.




Eigenvalues and Eignenvector of a matrix

Watch this lecture for a review of the concepts of the eigenvalues and eigenvectors

Matrix-vector multiplication o
. Fix different

— — multiplication types
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H’—/
Scalar multiplication

o D



https://www.youtube.com/watch?v=PFDu9oVAE-g

Eigenvalues and Eignenvector of a symmetric matrix

A squared matrix is symmetric if A = AT
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Eigenvalues and Eignenvector of a symmetric matrix

A squared matrix is symmetric if A = AT

: HE

Symmetric Non-symmetric

LA a2

Ja LA

< k2 LA
— T
b L

LA L
LA

Symmetric matrices are very important in engineering and the solution of many problems
come down to finding eigenvectors and eigenvalues for some symmetric matrix
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A squared matrix is symmetric if A = AT
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Symmetric matrices are very important in engineering and the solution of many problems
come down to finding eigenvectors and eigenvalues for some symmetric matrix

If A € R™™Mis a symmetric matrix then it has an orthonormal set of eigenvectors
Uq, Uy, ..., U, corresponding to (not necessarily distinct) eigenvalues 14, 4,,...,1,
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A squared matrix is symmetric if A = AT

3 2 05 51 3
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Symmetric matrices are very important in engineering and the solution of many problems
come down to finding eigenvectors and eigenvalues for some symmetric matrix

If A € R™™Mis a symmetric matrix then it has an orthonormal set of eigenvectors
Uq, Uy, ..., U, corresponding to (not necessarily distinct) eigenvalues 14, 4,,...,1,

The graph Laplacian is a symmetric matrix



Eigenvalues and Eignenvector of a symmetric matrix

Eigenvalues are real

v

Symmetric Matrix

Eigenvectors are orthogonal




Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero
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Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

The graph Laplacian is a symmetric positive semi-definite matrix
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01000 1 000 0]

v, Vs 10111 0400 0
w—p A=|0 1 0 1 0 D=100 2 00

011 0 1 0O 00 3 0

vy 0101 0 0000 2




Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

The graph Laplacian is a symmetric positive semi-definite matrix

1

(01 0 0 0 1 0 0 0 0] 1 -1 0 0 0]

v, Vs 10111 04000 14 -1 -1 -1
_>A=01010 D=0 0 2 0 0 _>L:0—12—10

011 0 1 0 00 3 0 0 -1 -1 3 -1

Vs 001 010 00 00 2] 0 -1 0 -1 2]



Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

The graph Laplacian is a symmetric positive semi-definite matrix
V1

['1 -1 0 0 O]

[0 1.0 0 0 1 0000 .
v, vs 10111 04000 o4 1 g | oheits
~ eigenvalues  All of them
e A=[0 1 0 1 0 D=0 0 2 0 0| wgp L={0 -1 2 -1 0 _
01101 00030 0 -1 -1 3 -1 are going to be
Vs 01 010 0000 2 0 -1 0 -1 2| real and

V, ) non-negative



Eigenvalues and Eignenvector of the Laplacian

We can think about a mesh as a graph. We can compute the eigenvalues
And eigenvectors of the Laplacian of this graph
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We can think about a mesh as a graph. We can compute the eigenvalues
And eigenvectors of the Laplacian of this graph
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Eigenvalues and Eignenvector in Python

In python you can compute the eigenvalues and the eigenvectors of a matrix : numpy.linalg.eig



https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.linalg.eig.html

From the data to the graph

Given the data X = {p,p,, ..., P} , We begin by constructing a graph G on the top of the data X:

e The points in X are the vertices of the graph
e The edges in the graph and their weights are determined by how close together and are in X

Three common methods to construct graphs :
* The neighborhood graphs (¢ — neighborhood graph or the knn graph)
* The complete graph on the set X.



Similarity Graph:e- Neighborhood Graph
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Construct the € — neighborhood graph

A common problem here is which € we should choose?



Similarity Graph: KNN Graph
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Similarity Graph: The fully connected graph

Suppose that we are given a set of points X = {py,p,, ..., P, } in R%. Another way to construct a graph on the top of
the data X is by connecting all points in X to each other. In this case we weight all edges by s;;: = s(x;, x;) defined as
follows :

S(mia mj) — E}{p( |I125-'1;3|| )



Spectral Embedding :example

Image source: sklearn
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A selection from the 64-dimensional digits dataset

* The spectral embedding can unfold the nonlinear structures in a data in a high-

dimensional feature space so that they become much easier to handle and understand.


http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
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Consider the digit dataset. This dataset can be thought of as a high-dimensional data with d = 64.
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A selection from the 64-dimensional digits dataset
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Consider the digit dataset. This dataset can be thought of as a high-dimensional data with d = 64.

So every image can be thought of as a vector x =[x, ...
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Consider the digit dataset. This dataset can be thought of as a high-dimensional data with d = 64.
So every image can be thought of as a vector x =[x, ...

Spectral embedding assigns to the point x new coordinates w = [wy, ...,
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In the example above we choose k = 2.
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< 64. Usually we choose d << k.
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Consider the digit dataset. This dataset can be thought of as a high-dimensional data with d = 64.
So every image can be thought of as a vector x =[x, ...

Spectral embedding assigns to the point x new coordinates w = [wy, ...,
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In the example above we choose k = 2.

But how exactly do we construct this new vector w ?

Spectrﬁiarl_’g{nbedding of the digits (time 0.44s)
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< 64. Usually we choose d << k.
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Spectral Embedding : general steps

* Construct a similarity graph phase : A similarity graph for the data
X is chosen from the many available neighborhood graphs we
studied in earlier lectures.

* The spectral embedding phase :In this step we use the eigenvectors
of the Laplacian of the similarity graph to construct new
coordinates.
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Spectral Embedding : Algorithm

Input : a data set X consists of a points in R%. The number of dimensions k < d

*Construct a similarity graph G=G(X) of the data. This can be the k-NN graph for
Instance.

*Compute the Laplacian of the graph L(G).
*Compute top k eigenvectors of L and place them as columns in a matrix V

Eigenvectors
*Form W from V by normalizing the rows of W (making every row a unit vector):

V=[vy,v,,..., V]

ul-j

vij =
(Z;{=1ui21)2

Column vectors



Spectral Embedding : Algorithm

Input : a data set X consists of a points in R%. The number of dimensions k < d

*Construct a similarity graph G=G(X) of the data. This can be the k-NN graph for
Instance.

*Compute the Laplacian of the graph L(G).
*Compute top k eigenvectors of L and place them as columns in a matrix V
*Form W from V by normalizing the rows of W (making every row a unit vector).

*Each row w; in the matrix W is, by definition, the spectral embedding of the point x;
from the original data



Spectral Embedding :more examples

spectral embedding

Image source: sklearn
example

=x1x2x3] ) w=[wlw2]

In general the results of spectral embedding can better reveal
or exaggerate useful underlying structures in the input data.


http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html

Spectral Embedding :more examples

spectral embedding

Image source: sklearn
example

=x1x2x3] ) w=[wlw2]


http://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html#sphx-glr-auto-examples-manifold-plot-compare-methods-py

Spectral Clustering example
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In the above example the dataset (a) 1s mapped to its clustering embedding (figure c) which can be
trivially classified using k-means (figure ¢ ).

This example shows that via by a transforming the data into the spectral domain, certain intrinsic shape
structures are revealed.


https://www.cs.sfu.ca/~haoz/pubs/zhang_eg07star_spectral.pdf

Spectral Clustering : general steps

» Construct a similarity graph phase : A similarity graph for the data X is
chosen among the many available neighborhood graphs we studied in
earlier lectures.

e The spectral embedding phase :In this step we use the eigenvectors of the
Laplacian of the similarity graph to construct new coordinates for the
points in X in which the clusters are more obvious.

* Using one of the classical clustering algorithms to cluster the points in the
spectral space and induce this clustering results to the original points.
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Spectral Clustering : Algorithm

Input : a data set X consists of a points in R%. The number of clusters k

*Construct a similarity graph G=G(X) of the data. This can be the k-NN graph for
Instance.

*Compute the Laplacian of the graph L(G). Spectral

_ _ _ embedding
*Compute top k eigenvectors of L and place them as columns in a matrix V

*Form W from V by normalizing the rows of W (making every row a unit vector).
*Run K-means to cluster the row vectors of W

* x; Is assigned to cluster a iff row i of W is assigned to cluster a.



More Spectral Clustering: examples
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http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf

Spectral Clustering vs K-means

Spectral clustering K-means clustering


http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf

Spectral Clustering/Embedding: remarks

Spectral clustering does not put any assumption on the shape of data.
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Spectral clustering can be used to for clustering non-linearly separable data.

The results of spectral embedding can better reveal or exaggerate useful underlying structures in the
Input data.


http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf

