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Graph Laplacian

Where D is the degree matrix and A is the adjacency matrix

𝐿 = 𝐷 − 𝐴

Let G be a graph on n nodes. The Graph Laplacian is an n by n matrix given by :

𝑣1

𝑣2

𝑣3
𝑣4

𝑣5



Symmetric Graph Laplacian

Explicitly this is given by:



Eigenvalues and Eignenvector of a matrix

Watch this lecture for a review of the concepts of the eigenvalues and eigenvectors

https://www.youtube.com/watch?v=PFDu9oVAE-g


Eigenvalues and Eignenvector of a symmetric matrix

If 𝐴 ∈ 𝑅𝑛×𝑛is a symmetric matrix then it has an orthonormal set of eigenvectors 
𝑢1, 𝑢2, . . . , 𝑢𝑛 corresponding to (not necessarily distinct) eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑛

A squared matrix is symmetric if 𝐴 = 𝐴𝑇

Symmetric matrices are very important in engineering and the solution of many problems 
Come down to finding eigenvectors and eigenvalues for some symmetric matrix

The graph Laplacian is a symmetric matrix

Symmetric Non-symmetric 
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Eigenvalues and Eignenvector of a symmetric matrix

Symmetric Matrix
Eigenvalues are real

Eigenvectors are orthogonal



Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

The graph Laplacian is a symmetric positive-semi definite matrix

A squared matrix is symmetric is semi-positive definite if all its eigenvalues are larger than or equal to zero

Solve its
eigenvalues All of them 

are going to be
real and positive
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A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

The graph Laplacian is a symmetric positive semi-definite matrix
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Eigenvalues and Eignenvector of the Laplacian

We can think about a mesh as a graph. We can compute the eigenvalues
And eigenvectors of the Laplacian of this graph



Eigenvalues and Eignenvector of the Laplacian

We can think about a mesh as a graph. We can compute the eigenvalues
And eigenvectors of the Laplacian of this graph

The first 10
eigenvectors of
this mesh



Eigenvalues and Eignenvector in Python

In python you can compute the eigenvalues and the eigenvectors of a matrix : numpy.linalg.eig

https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.linalg.eig.html


From the data to the graph

Given the data 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 , we begin by constructing a graph G on the top of the data X: 

• The points in 𝑋 are the vertices of the graph 
• The edges in the graph and their weights are determined by how close together and are in X

Three common methods to construct graphs :
• The neighborhood graphs (ɛ − neighborhood graph or the knn graph)
• The complete graph on the set 𝑋.



Similarity Graph:ɛ- Neighborhood Graph

When ɛ is a little larger we start 
some clusters starts to get form  

When ɛ is even larger we have
few clusters 

As the clusters get larger and larger

At some point all 
points become a par 
to of a single cluster

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑡ℎ𝑒 ɛ − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑔𝑟𝑎𝑝ℎ

A common problem here is which ɛ we should choose? 



Similarity Graph: KNN Graph

When ɛ is a little larger we start 
some clusters starts to get form  

When ɛ is even larger we have
few clusters 

As the clusters get larger and larger

At some point all 
points become a par 
to of a single cluster

Example of 2-NN graph Example of 3-NN graph
Example of 1-NN graph



Suppose that we are given a set of points 𝑋 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑. Another way to construct a graph on the top of 
the data X is by connecting all points in X to each other. In this case we weight all edges by 𝑠𝑖𝑗: = 𝑠(𝑥𝑖 , 𝑥𝑗) defined as

follows :

Similarity Graph: The fully connected graph



• The spectral embedding can unfold the nonlinear structures in a data in a high-

dimensional feature space so that they become much easier to handle and understand.

Image source: sklearn

example

spectral embedding

Spectral Embedding :example

http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html


Consider the digit dataset. This dataset can be thought of as a high-dimensional data with 𝑑 = 64.

So every image can be thought of as a vector 𝑥 = [𝑥1, … , 𝑥64]

Spectral embedding assigns to the point x new coordinates 𝑤 = [𝑤1,… , 𝑤𝑘] where 𝑘 ≤ 64. Usually we choose 𝑑 << 𝑘.
In the example above we choose 𝑘 = 2.

But how exactly do we construct this new vector 𝑤 ?

Image source: sklearn
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Spectral Embedding :example

spectral embedding
𝑥 = [𝑥1, … , 𝑥64] 𝑤 = [𝑤1, 𝑤2]
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• Construct a similarity graph phase : A similarity graph for the data 

X is chosen from the many available neighborhood graphs we 

studied in earlier lectures.

• The spectral embedding phase :In this step we use the eigenvectors 

of the Laplacian of the similarity graph to construct new 

coordinates.

Spectral Embedding : general steps



•Construct a similarity graph G=G(X) of the data. This can be the k-NN graph for 

instance.

•Compute the Laplacian of the graph L(G).

•Compute top k eigenvectors of L and place them as columns in a matrix V

•Form W from V by normalizing the rows of W (making every row a unit vector).

Each row wi in the matrix W is, by definition, the spectral embedding of the point 

xi from the original data.

Input : a data set X consists of a points in 𝑅𝑑. The number of dimensions 𝑘 ≤ 𝑑

Spectral Embedding : Algorithm
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Column vectors 

Eigenvectors 

Input : a data set X consists of a points in 𝑅𝑑. The number of dimensions 𝑘 ≤ 𝑑

V=[𝑣1, 𝑣2, . . . , 𝑣𝑘]
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V=[𝑣1, 𝑣2, . . . , 𝑣𝑘]

Column vectors 

Eigenvectors 

𝑣𝑖𝑗 =
𝑢𝑖𝑗

 𝑙=1
𝑘 𝑢𝑖𝑙

2 2
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•Construct a similarity graph G=G(X) of the data. This can be the k-NN graph for 

instance.

•Compute the Laplacian of the graph L(G).

•Compute top k eigenvectors of L and place them as columns in a matrix V

•Form W from V by normalizing the rows of W (making every row a unit vector).

•Each row 𝑤𝑖 in the matrix W is, by definition, the spectral embedding of the point 𝑥𝑖
from the original data

Spectral Embedding : Algorithm
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Image source: sklearn

example

spectral embedding

Spectral Embedding :more examples

x=[x1,x2,x3] w=[w1,w2]

In general the results of spectral embedding can better reveal 

or exaggerate useful underlying structures in the input data.

http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html


Image source: sklearn

example

spectral embedding

Spectral Embedding :more examples

x=[x1,x2,x3] w=[w1,w2]

http://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html#sphx-glr-auto-examples-manifold-plot-compare-methods-py


• In the above example the dataset (a) is mapped to its clustering embedding (figure c) which can be 

trivially classified using k-means (figure c ).

• This example shows that via by a transforming the data into the spectral domain, certain intrinsic shape 

structures are revealed. 

Image source

Spectral Clustering example

https://www.cs.sfu.ca/~haoz/pubs/zhang_eg07star_spectral.pdf


• Construct a similarity graph phase : A similarity graph for the data X is 

chosen among the many available neighborhood graphs we studied in 

earlier lectures.

• The spectral embedding phase :In this step we use the eigenvectors of the 

Laplacian of the similarity graph to construct new coordinates for the 

points in X in which the clusters are more obvious.

• Using one of the classical clustering algorithms to cluster the points in the 

spectral space and induce this clustering results to the original points.

Spectral Clustering : general steps
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•Construct a similarity graph G=G(X) of the data. This can be the k-NN graph for 

instance.

•Compute the Laplacian of the graph L(G).

•Compute top k eigenvectors of L and place them as columns in a matrix V

•Form W from V by normalizing the rows of W (making every row a unit vector).

•Run K-means to cluster the row vectors of W

• vi is assigned to cluster  iff row i of W is assigned to cluster .

Spectral Clustering : Algorithm

Input : a data set X consists of a points in 𝑅𝑑. The number of clusters k
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Spectral 
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More Spectral Clustering: examples

http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf
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Spectral Clustering vs K-means

Spectral clustering K-means clustering

http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf


Spectral clustering does not put any assumption on the shape of data.

Spectral Clustering/Embedding: remarks

Spectral clustering can be used to for clustering non-linearly separable data.
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source

The results of spectral embedding can better reveal or exaggerate useful underlying structures in the 

input data.

http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf

