Spectral Clustering

Graph Laplacian

Let G be a graph on n nodes. The Graph Laplacian is an n by n matrix given by :

$$
L=D-A
$$

Where D is the degree matrix and A is the adjacency matrix

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

$D=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$

$$
L=\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 4 & -1 & -1 & -1 \\
0 & -1 & 2 & -1 & 0 \\
0 & -1 & -1 & 3 & -1 \\
0 & -1 & 0 & -1 & 2
\end{array}\right]
$$

Symmetric Graph Laplacian

$$
L^{\text {sym }}:=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2},
$$

Explicitly this is given by:

$$
L_{i, j}^{\operatorname{sym}}:= \begin{cases}1 & \text { if } i=j \text { and } \operatorname{deg}\left(v_{i}\right) \neq 0 \\ -\frac{1}{\sqrt{\operatorname{deg}\left(v_{i}\right) \operatorname{deg}\left(v_{j}\right)}} & \text { if } i \neq j \text { and } v_{i} \text { is adjacent to } v_{j} \\ 0 & \text { otherwise. }\end{cases}
$$

Eigenvalues and Eignenvector of a matrix

Watch this lecture for a review of the concepts of the eigenvalues and eigenvectors

Eigenvalues and Eignenvector of a symmetric matrix

A squared matrix is symmetric if $A=A^{T}$

Eigenvalues and Eignenvector of a symmetric matrix

A squared matrix is symmetric if $A=A^{T}$
$\left[\begin{array}{lll}3 & 2 & 5 \\ 2 & 5 & 4 \\ 5 & 4 & 7\end{array}\right]$
Symmetric

$$
\begin{aligned}
& {\left[\begin{array}{lll}
5 & 1 & 3 \\
2 & 0 & 2 \\
0 & 1 & 5
\end{array}\right]} \\
& \text { Non-symmetric }
\end{aligned}
$$

Eigenvalues and Eignenvector of a symmetric matrix

A squared matrix is symmetric if $A=A^{T}$

$$
\left[\begin{array}{lll}
3 & 2 & 5 \\
2 & 5 & 4 \\
5 & 4 & 7
\end{array}\right]
$$

Symmetric
$\left[\begin{array}{lll}5 & 1 & 3 \\ 2 & 0 & 2 \\ 0 & 1 & 5\end{array}\right]$
Non-symmetric

Symmetric matrices are very important in engineering and the solution of many problems come down to finding eigenvectors and eigenvalues for some symmetric matrix

Eigenvalues and Eignenvector of a symmetric matrix

A squared matrix is symmetric if $A=A^{T}$

$$
\left[\begin{array}{lll}
3 & 2 & 5 \\
2 & 5 & 4 \\
5 & 4 & 7
\end{array}\right]
$$

Symmetric

$$
\begin{aligned}
& {\left[\begin{array}{lll}
5 & 1 & 3 \\
2 & 0 & 2 \\
0 & 1 & 5
\end{array}\right]} \\
& \text { Non-symmetric }
\end{aligned}
$$

Symmetric matrices are very important in engineering and the solution of many problems come down to finding eigenvectors and eigenvalues for some symmetric matrix

If $A \in R^{n \times n}$ is a symmetric matrix then it has an orthonormal set of eigenvectors $u_{1}, u_{2}, \ldots, u_{n}$ corresponding to (not necessarily distinct) eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$

Eigenvalues and Eignenvector of a symmetric matrix

A squared matrix is symmetric if $A=A^{T}$

$$
\left[\begin{array}{lll}
3 & 2 & 5 \\
2 & 5 & 4 \\
5 & 4 & 7
\end{array}\right]
$$

Symmetric

$$
\begin{aligned}
& {\left[\begin{array}{lll}
5 & 1 & 3 \\
2 & 0 & 2 \\
0 & 1 & 5
\end{array}\right]} \\
& \text { Non-symmetric }
\end{aligned}
$$

Symmetric matrices are very important in engineering and the solution of many problems come down to finding eigenvectors and eigenvalues for some symmetric matrix

If $A \in R^{n \times n}$ is a symmetric matrix then it has an orthonormal set of eigenvectors $u_{1}, u_{2}, \ldots, u_{n}$ corresponding to (not necessarily distinct) eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$

The graph Laplacian is a symmetric matrix

Eigenvalues and Eignenvector of a symmetric matrix

Eigenvalues are real
Eigenvectors are orthogonal

Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

The graph Laplacian is a symmetric positive semi-definite matrix

Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

The graph Laplacian is a symmetric positive semi-definite matrix

Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

The graph Laplacian is a symmetric positive semi-definite matrix

Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

The graph Laplacian is a symmetric positive semi-definite matrix

Eigenvalues and Eignenvector of a symmetric positive definite matrix

A squared matrix is symmetric is positive definite if all its eigenvalues are larger than zero

A squared matrix is symmetric is positive semi-definite if all its eigenvalues are larger than or equal to zero

The graph Laplacian is a symmetric positive semi-definite matrix

Eigenvalues and Eignenvector of the Laplacian

We can think about a mesh as a graph. We can compute the eigenvalues And eigenvectors of the Laplacian of this graph

Eigenvalues and Eignenvector of the Laplacian

We can think about a mesh as a graph. We can compute the eigenvalues
And eigenvectors of the Laplacian of this graph

The first 10 eigenvectors of this mesh

Eigenvalues and Eignenvector in Python

In python you can compute the eigenvalues and the eigenvectors of a matrix : numpy.linalg.eig

From the data to the graph

Given the data $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, we begin by constructing a graph G on the top of the data X :

- The points in X are the vertices of the graph
- The edges in the graph and their weights are determined by how close together and are in X

Three common methods to construct graphs :

- The neighborhood graphs (ε - neighborhood graph or the knn graph)
- The complete graph on the set X.

Similarity Graph:c- Neighborhood Graph

A common problem here is which ε we should choose?

Similarity Graph: KNN Graph

Similarity Graph: The fully connected graph

Suppose that we are given a set of points $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in R^{d}. Another way to construct a graph on the top of the data X is by connecting all points in X to each other. In this case we weight all edges by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ defined as follows:

$$
s\left(x_{i}, x_{j}\right)=\exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Spectral Embedding :example

Image source: sklearn example

- The spectral embedding can unfold the nonlinear structures in a data in a highdimensional feature space so that they become much easier to handle and understand.

Spectral Embedding :example

Image source: sklearn example

Spectral Embedding :example

Image source: sklearn example

Consider the digit dataset. This dataset can be thought of as a high-dimensional data with $d=64$.

Spectral Embedding :example

Image source: sklearn example

Consider the digit dataset. This dataset can be thought of as a high-dimensional data with $d=64$.
So every image can be thought of as a vector $x=\left[x_{1}, \ldots, x_{64}\right]$

Image source: sklearn example

Consider the digit dataset. This dataset can be thought of as a high-dimensional data with $d=64$.
So every image can be thought of as a vector $x=\left[x_{1}, \ldots, x_{64}\right]$
Spectral embedding assigns to the point x new coordinates $w=\left[w_{1}, \ldots, w_{k}\right]$ where $k \leq 64$. Usually we choose $d \ll k$. In the example above we choose $k=2$.

Image source: sklearn example

Consider the digit dataset. This dataset can be thought of as a high-dimensional data with $d=64$.
So every image can be thought of as a vector $x=\left[x_{1}, \ldots, x_{64}\right]$
Spectral embedding assigns to the point x new coordinates $w=\left[w_{1}, \ldots, w_{k}\right]$ where $k \leq 64$. Usually we choose $d \ll k$. In the example above we choose $k=2$.

But how exactly do we construct this new vector w ?

- Construct a similarity graph phase : A similarity graph for the data X is chosen from the many available neighborhood graphs we studied in earlier lectures.
- The spectral embedding phase :In this step we use the eigenvectors of the Laplacian of the similarity graph to construct new coordinates.

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $L(G)$.

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $L(G)$.
- Compute top k eigenvectors of L and place them as columns in a matrix V

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $\mathrm{L}(\mathrm{G})$.
- Compute top k eigenvectors of L and place them as columns in a matrix V

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $\mathrm{L}(\mathrm{G})$.
- Compute top k eigenvectors of L and place them as columns in a matrix V
-Form W from V by normalizing the rows of W (making every row a unit vector).

$$
v_{i j}=\frac{u_{i j}}{\left(\sum_{l=1}^{k} u_{i l}^{2}\right)^{2}}
$$

Spectral Embedding : Algorithm
Input : a data set X consists of a points in R^{d}. The number of dimensions $k \leq d$

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $L(G)$.
- Compute top k eigenvectors of L and place them as columns in a matrix V
-Form W from V by normalizing the rows of W (making every row a unit vector).
-Each row w_{i} in the matrix W is, by definition, the spectral embedding of the point x_{i} from the original data

Image source: sklearn example

In general the results of spectral embedding can better reveal or exaggerate useful underlying structures in the input data.

$x=[x 1, x 2, x 3]$
spectral embedding

$w=[w 1, w 2]$

Image source: sklearn example

- In the above example the dataset (a) is mapped to its clustering embedding (figure c) which can be trivially classified using k-means (figure c).
- This example shows that via by a transforming the data into the spectral domain, certain intrinsic shape structures are revealed.
- Construct a similarity graph phase : A similarity graph for the data X is chosen among the many available neighborhood graphs we studied in earlier lectures.
- The spectral embedding phase :In this step we use the eigenvectors of the Laplacian of the similarity graph to construct new coordinates for the points in X in which the clusters are more obvious.
- Using one of the classical clustering algorithms to cluster the points in the spectral space and induce this clustering results to the original points.
- Construct a similarity graph phase : A similarity graph for the data X is chosen among the many available neighborhood graphs we studied in earlier lectures.
- The spectral embedding phase :In this step we use the eigenvectors of the Laplacian of the similarity graph to construct new coordinates for the points in X in which the clusters are more obvious.
- Using one of the classical clustering algorithms to cluster the points in the spectral space and induce this clustering results to the original points.

Spectral Clustering : Algorithm
Input : a data set X consists of a points in R^{d}. The number of clusters k

Spectral Clustering : Algorithm
Input : a data set X consists of a points in R^{d}. The number of clusters k

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.

Spectral Clustering : Algorithm
Input: a data set X consists of a points in R^{d}. The number of clusters k

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $\mathrm{L}(\mathrm{G})$.

Spectral Clustering : Algorithm
Input: a data set X consists of a points in R^{d}. The number of clusters k

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $L(G)$.
- Compute top k eigenvectors of L and place them as columns in a matrix V

Spectral Clustering : Algorithm
Input: a data set X consists of a points in R^{d}. The number of clusters k

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $L(G)$.
- Compute top k eigenvectors of L and place them as columns in a matrix V

Spectral Clustering : Algorithm
Input : a data set X consists of a points in R^{d}. The number of clusters k

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $L(G)$.
- Compute top k eigenvectors of L and place them as columns in a matrix V
-Form W from V by normalizing the rows of W (making every row a unit vector).
-Run K-means to cluster the row vectors of W

Spectral Clustering : Algorithm
Input : a data set X consists of a points in R^{d}. The number of clusters k

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $\mathrm{L}(\mathrm{G})$.
-Compute top k eigenvectors of L and place them as columns in a matrix V
-Form W from V by normalizing the rows of W (making every row a unit vector).
-Run K-means to cluster the row vectors of W
- x_{i} is assigned to cluster α iff row i of W is assigned to cluster α.

Spectral Clustering : Algorithm
Input : a data set X consists of a points in R^{d}. The number of clusters k

- Construct a similarity graph $G=G(X)$ of the data. This can be the $k-N N$ graph for instance.
- Compute the Laplacian of the graph $\mathrm{L}(\mathrm{G})$.
- Compute top k eigenvectors of L and place them as columns in a matrix V
-Form W from V by normalizing the rows of W (making every row a unit vector).
-Run K-means to cluster the row vectors of W
- x_{i} is assigned to cluster α iff row i of W is assigned to cluster α.

Spectral embedding

More Spectral Clustering: examples

Spectral clustering does not put any assumption on the shape of data.

Spectral clustering can be used to for clustering non-linearly separable data.

The results of spectral embedding can better reveal or exaggerate useful underlying structures in the input data.

