
The Backpropagation Algorithm

MUSTAFA HAJIJ

Perceptron

For every point p on the surface

there exists a small disk

that is mapped via a map f to the

unit disk in the plane.

Surfaces are examples of manifolds. In particular,

surfaces are 2-manifolds.

𝑎 = 𝑎1, … , 𝑎𝑘
𝑇 𝑤𝑇 = 𝑤1, … , 𝑤𝑘

Perceptron

For every point p on the surface

there exists a small disk

that is mapped via a map f to the

unit disk in the plane.

Surfaces are examples of manifolds. In particular,

surfaces are 2-manifolds.

𝑖=1

𝑘

𝑤𝑖𝑎𝑖 + b

𝑎 = 𝑎1, … , 𝑎𝑘
𝑇 𝑤𝑇 = 𝑤1, … , 𝑤𝑘

b is called a bias term.

Perceptron

For every point p on the surface

there exists a small disk

that is mapped via a map f to the

unit disk in the plane.

Surfaces are examples of manifolds. In particular,

surfaces are 2-manifolds.

𝑖=1

𝑘

𝑤𝑖𝑎𝑖 + b

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝜎

σ

σ(

𝑖=1

𝑘

𝑤𝑖𝑎𝑖 + 𝑏) = 𝑤
𝑇𝑎 + 𝑏

𝑎 = 𝑎1, … , 𝑎𝑘
𝑇 𝑤𝑇 = 𝑤1, … , 𝑤𝑘

Perceptron

For every point p on the surface

there exists a small disk

that is mapped via a map f to the

unit disk in the plane.

Surfaces are examples of manifolds. In particular,

surfaces are 2-manifolds.

𝑖=1

𝑘

𝑤𝑖𝑎𝑖 + b

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝜎

σ

σ(

𝑖=1

𝑘

𝑤𝑖𝑎𝑖 + 𝑏) = σ(𝑤𝑇𝑎 + 𝑏)

𝑎 = 𝑎1, … , 𝑎𝑘
𝑇 𝑤𝑇 = 𝑤1, … , 𝑤𝑘

Training Perceptron

Given a collection of points 𝑥1, 𝑦1 , … . , 𝑥𝑛, 𝑦𝑛 where
𝑥𝑖 is a points in 𝑅

𝑑 and 𝑦𝑖 is a label that takes values in {−1,+1}

Surfaces are examples of manifolds. In particular,

surfaces are 2-manifolds.

We want to choose 𝑤 = [𝑤1, …𝑤𝑛] and b such that the hyperplane determined by the 𝑤𝑥 + 𝑏 = 0
separates the points 𝑥𝑖 according to their labels. In other words, we want to choose the plane 𝑤𝑥 + 𝑏 = 0
So that all points with positive sign on one side and all points with negative sign on the other side.

As usual we have to define a cost function and a notion of error.

Training Perceptron

Given a collection of points 𝑥1, 𝑦1 , … . , 𝑥𝑛, 𝑦𝑛 where
𝑥𝑖 is a points in 𝑅

𝑑 and 𝑦𝑖 is a label that takes values in {−1,+1}

Surfaces are examples of manifolds. In particular,

surfaces are 2-manifolds.

We want to choose 𝑤 = [𝑤1, …𝑤𝑑] and b such that the hyperplane determined by the 𝑤𝑥 + 𝑏 = 0
separates the points 𝑥𝑖 according to their labels. In other words, we want to choose the plane 𝑤𝑥 + 𝑏 = 0
so that all points with positive sign on one side and all points with negative sign on the other side.

As usual we have to define a cost function and a notion of error.

Training Perceptron

Given a collection of points 𝑥1, 𝑦1 , … . , 𝑥𝑛, 𝑦𝑛 where
𝑥𝑖 is a points in 𝑅

𝑑 and 𝑦𝑖 is a label that takes values in {−1,+1}

Surfaces are examples of manifolds. In particular,

surfaces are 2-manifolds.

We want to choose 𝑤 = [𝑤1, …𝑤𝑑] and b such that the hyperplane determined by the 𝑤𝑥 + 𝑏 = 0
separates the points 𝑥𝑖 according to their labels. In other words, we want to choose the plane 𝑤𝑥 + 𝑏 = 0
so that all points with positive sign on one side and all points with negative sign on the other side.

As usual we have to define a cost function and a notion of error.

General Gradient Decent Algorithm

Suppose that we are given a differentiable function 𝑓 𝑤1, … , 𝑤𝑑

Want to find 𝑤1, … , 𝑤𝑛 such that 𝑓 𝑤1, … , 𝑤𝑛 is minimal

Outline :

(1) Initiate 𝑤1, … , 𝑤𝑛 randomly
(2) keep changing 𝑤1, … , 𝑤𝑛 until hopefully 𝑓 𝑤1, … , 𝑤𝑛 is minimal

But how exactly do we change 𝑤1, … , 𝑤𝑛 ?

First we will need to know what gradient decent means.

General Gradient Decent Algorithm

Suppose that we are given a differentiable function 𝑓 𝑤1, … , 𝑤𝑑

Want to find 𝑤1, … , 𝑤𝑑 such that 𝑓 𝑤1, … , 𝑤𝑑 is minimal

Outline :

(1) Initiate 𝑤1, … , 𝑤𝑛 randomly
(2) keep changing 𝑤1, … , 𝑤𝑛 until hopefully 𝑓 𝑤1, … , 𝑤𝑛 is minimal

But how exactly do we change 𝑤1, … , 𝑤𝑛 ?

First we will need to know what gradient decent means.

General Gradient Decent Algorithm

Suppose that we are given a differentiable function 𝑓 𝑤1, … , 𝑤𝑑

Want to find 𝑤1, … , 𝑤𝑑 such that 𝑓 𝑤1, … , 𝑤𝑑 is minimal

Outline :

(1) Initiate 𝑤1, … , 𝑤𝑛 randomly
(2) keep changing 𝑤1, … , 𝑤𝑛 until hopefully 𝑓 𝑤1, … , 𝑤𝑛 is minimal

But how exactly do we change 𝑤1, … , 𝑤𝑛 ?

First we will need to know what gradient decent means.

. Gradient decent gives a way to find a local minimal for f

General Gradient Decent Algorithm

Suppose that we are given a differentiable function 𝑓 𝑤1, … , 𝑤𝑑

Want to find 𝑤1, … , 𝑤𝑑 such that 𝑓 𝑤1, … , 𝑤𝑑 is minimal

Outline :

(1) Initiate 𝑤1, … , 𝑤𝑑 randomly
(2) keep changing 𝑤1, … , 𝑤𝑑 until hopefully 𝑓 𝑤1, … , 𝑤𝑑 is minimal

First we will need to know what gradient decent means.

. Gradient decent gives a way to find a local minimal for f

General Gradient Decent Algorithm

Suppose that we are given a differentiable function 𝑓 𝑤1, … , 𝑤𝑑

Want to find 𝑤1, … , 𝑤𝑑 such that 𝑓 𝑤1, … , 𝑤𝑑 is minimal

Outline :

(1) Initiate 𝑤1, … , 𝑤𝑑 randomly
(2) keep changing 𝑤1, … , 𝑤𝑑 until hopefully 𝑓 𝑤1, … , 𝑤𝑑 is minimal

But how exactly do we change 𝑤1, … , 𝑤𝑑 ?

First we will need to know what gradient decent means.

. Gradient decent gives a way to find a local minimal for f

General Gradient Decent Algorithm

(1) Initiate 𝑤1, … , 𝑤𝑛 randomly
(2) Repeat until convergence :

(1) For every i in range(1,n):

(1)𝑤𝑖 ≔ 𝑤𝑖 − 𝑞
∂ 𝑓
∂ 𝑤𝑖

(here we do simultaneous update for the parameters 𝑤𝑖)

Key idea : gradient of f goes in the direction at which f maximally change.

𝑓 𝑜𝑙𝑑 𝑤𝑖 ≥ 𝑓(𝑛𝑒𝑤 𝑤𝑖)

Gradient decent asserts that the values of the function 𝑓 when we update as described above are non-increasing :

General Gradient Decent Algorithm

(1) Initiate 𝑤1, … , 𝑤𝑑 randomly
(2) Repeat until convergence :

(1) For every i in range(1,n):

(1)𝑤𝑖 ≔ 𝑤𝑖 − 𝑞
∂ 𝑓
∂ 𝑤𝑖

(here we do simultaneous update for the parameters 𝑤𝑖)

Key idea : gradient of f goes in the direction at which f maximally change.

𝑓 𝑜𝑙𝑑 𝑤𝑖 ≥ 𝑓(𝑛𝑒𝑤 𝑤𝑖)

Gradient decent asserts that the values of the function 𝑓 when we update as described above are non-increasing :

General Gradient Decent Algorithm

(1) Initiate 𝑤1, … , 𝑤𝑑 randomly
(2) Repeat until convergence :

(1) For every i in range(1,d):

(1)𝑤𝑖 ≔ 𝑤𝑖 − 𝑞
∂ 𝑓
∂ 𝑤𝑖

(here we do simultaneous update for the parameters 𝑤𝑖)

Key idea : gradient of f goes in the direction at which f maximally change.

𝑓 𝑜𝑙𝑑 𝑤𝑖 ≥ 𝑓(𝑛𝑒𝑤 𝑤𝑖)

Gradient decent asserts that the values of the function 𝑓 when we update as described above are non-increasing :

General Gradient Decent Algorithm

(1) Initiate 𝑤1, … , 𝑤𝑑 randomly
(2) Repeat until convergence :

(1) For every i in range(1,d):

(1)𝑤𝑖 ≔ 𝑤𝑖 − 𝑞
∂ 𝑓
∂ 𝑤𝑖

(here we do simultaneous update for the parameters 𝑤𝑖)

Key idea : gradient of f goes in the direction at which f maximally change.

𝑓 𝑜𝑙𝑑 𝑤𝑖 ≥ 𝑓(𝑛𝑒𝑤 𝑤𝑖)

Gradient decent asserts that the values of the function 𝑓 when we update as described above are non-increasing :

Training Perceptron

For any points 𝑥1 𝑎𝑛𝑑 𝑥2 on the plane 𝑤𝑇𝑥 + 𝑏 = 0, we have

𝑤𝑇𝑥1 + 𝑏=𝑤
𝑇𝑥2 + 𝑏=0

Hence

𝑤𝑇(𝑥1 − 𝑥2)=0

Hence the vector 𝑤𝑇 is orthogonal to (𝑥1 − 𝑥2)

Moreover, for any 𝑥0 on the plane 𝑤𝑇𝑥 + 𝑏 = 0 we have

𝑏 = −𝑤𝑇𝑥0

Now back to training a perceptron. We need some facts.

Training Perceptron

For any points 𝑥1 𝑎𝑛𝑑 𝑥2 on the plane 𝑤𝑇𝑥 + 𝑏 = 0, we have

𝑤𝑇𝑥1 + 𝑏=𝑤
𝑇𝑥2 + 𝑏=0

Hence

𝑤𝑇(𝑥1 − 𝑥2)=0

Hence the vector 𝑤𝑇 is orthogonal to (𝑥1 − 𝑥2)

Moreover, for any 𝑥0 on the plane 𝑤𝑇𝑥 + 𝑏 = 0 we have

𝑏 = −𝑤𝑇𝑥0

Now back to training a perceptron. We need some facts.

Training Perceptron

For any points 𝑥1 𝑎𝑛𝑑 𝑥2 on the plane 𝑤𝑇𝑥 + 𝑏 = 0, we have

𝑤𝑇𝑥1 + 𝑏=𝑤
𝑇𝑥2 + 𝑏=0

Hence

𝑤𝑇(𝑥1 − 𝑥2)=0

Hence the vector 𝑤𝑇 is orthogonal to (𝑥1 − 𝑥2)

Moreover, for any 𝑥0 on the plane 𝑤𝑇𝑥 + 𝑏 = 0 we have

𝑏 = −𝑤𝑇𝑥0

Now back to training a perceptron. We need some facts.

Training Perceptron

For any points 𝑥1 𝑎𝑛𝑑 𝑥2 on the plane 𝑤𝑇𝑥 + 𝑏 = 0, we have

𝑤𝑇𝑥1 + 𝑏=𝑤
𝑇𝑥2 + 𝑏=0

Hence

𝑤𝑇(𝑥1 − 𝑥2)=0

Hence the vector 𝑤𝑇 is orthogonal to (𝑥1 − 𝑥2)

Moreover, for any 𝑥0 on the plane 𝑤𝑇𝑥 + 𝑏 = 0 we have

𝑏 = −𝑤𝑇𝑥0

Now back to training a perceptron. We need some facts.

Training Perceptron

For any points 𝑥1 𝑎𝑛𝑑 𝑥2 on the plane 𝑤𝑇𝑥 + 𝑏 = 0, we have

𝑤𝑇𝑥1 + 𝑏=𝑤
𝑇𝑥2 + 𝑏=0

Hence

𝑤𝑇(𝑥1 − 𝑥2)=0

Hence the vector 𝑤𝑇 is orthogonal to (𝑥1 − 𝑥2)

Moreover, for any 𝑥0 on the plane 𝑤𝑇𝑥 + 𝑏 = 0 we have

𝑏 = −𝑤𝑇𝑥0

Now back to training a perceptron. We need some facts.

Training Perceptron

For any points 𝑥1 𝑎𝑛𝑑 𝑥2 on the plane 𝑤𝑇𝑥 + 𝑏 = 0, we have

𝑤𝑇𝑥1 + 𝑏=𝑤
𝑇𝑥2 + 𝑏=0

Hence

𝑤𝑇(𝑥1 − 𝑥2)=0

Hence the vector 𝑤𝑇 is orthogonal to (𝑥1 − 𝑥2)

Moreover, for any 𝑥0 on the plane 𝑤𝑇𝑥 + 𝑏 = 0 we have

𝑏 = −𝑤𝑇𝑥0

Now back to training a perceptron. We need some facts.

Training Perceptron

So if we have a point and we want to see where it is located on
with respect to the plan, then all we have to do is to plug it in
the equation of the plane.

𝑤
𝑤𝑇𝑥 + 𝑏 = 0

𝑥′

𝑥0

𝑑 = 𝑤𝑇 𝑥′ − 𝑥0 = 𝑤
𝑇𝑥′ − 𝑤𝑇x0 = 𝑤

𝑇𝑥′ + 𝑏

𝑑

Training Perceptron

So if we have a point and we want to see where it is located on
with respect to the plan, then all we have to do is to plug it in
the equation of the plane.

𝑤
𝑤𝑇𝑥 + 𝑏 = 0

𝑥′

𝑥0

𝑑 = 𝑤𝑇 𝑥′ − 𝑥0 = 𝑤
𝑇𝑥′ − 𝑤𝑇x0 = 𝑤

𝑇𝑥′ + 𝑏

𝑑

Training Perceptron

Note that 𝑑𝑖 ≥ 0

𝑤
𝑤𝑇𝑥 + 𝑏 = 0

𝑥′

𝑥0

𝑑𝑖 = 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏)

𝑑

Write

Where (𝑥𝑖 , 𝑦𝑖) is a training example

Training Perceptron

𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏 ≔ − 𝑀 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏0

Where M is the set of misclassified points

∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤
=

𝑀

𝑦𝑖𝑥𝑖

∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤
=

𝑀

𝑦𝑖

We want to apply gradient decent on the function 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

Define

Training Perceptron

𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏 ≔ − 𝑀 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏0

Where M is the set of misclassified points

∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤
=

𝑀

𝑦𝑖𝑥𝑖

∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤
=

𝑀

𝑦𝑖

We want to apply gradient decent on the function 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

Define

Training Perceptron

𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏 ≔ − 𝑀 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏0

Where M is the set of misclassified points

∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤
=

𝑀

𝑦𝑖𝑥𝑖

∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑏
=

𝑀

𝑦𝑖

We want to apply gradient decent on the function 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

Define

Training Perceptron

𝑤𝑛𝑒𝑤: = 𝑤𝑜𝑙𝑑 − 𝑞
∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤

𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏 ≔ − 𝑀 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏0

𝑏𝑛𝑒𝑤: = 𝑏𝑜𝑙𝑑 − 𝑞
∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤

(1) Assign the weights 𝑤 randomly
(2) Repeat until convergence

if the examples are linearly separable then the above model
classifies the points

To train a perceptron

Training Perceptron

𝑤𝑛𝑒𝑤: = 𝑤𝑜𝑙𝑑 − 𝑞
∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤

𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏 ≔ − 𝑀 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏0

𝑏𝑛𝑒𝑤: = 𝑏𝑜𝑙𝑑 − 𝑞
∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤

(1) Assign the weights 𝑤 randomly
(2) Repeat until convergence

if the examples are linearly separable then the above model
classifies the points

To train a perceptron

Training Perceptron

𝑤𝑛𝑒𝑤: = 𝑤𝑜𝑙𝑑 − 𝑞
∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤

𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏 ≔ − 𝑀 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏0

𝑏𝑛𝑒𝑤: = 𝑏𝑜𝑙𝑑 − 𝑞
∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑏

(1) Assign the weights 𝑤 randomly
(2) Repeat until convergence

if the examples are linearly separable then the above model
classifies the points

To train a perceptron

Training Perceptron

𝑤𝑛𝑒𝑤: = 𝑤𝑜𝑙𝑑 − 𝑞
∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑤

𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏 ≔ − 𝑀 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏0

𝑏𝑛𝑒𝑤: = 𝑏𝑜𝑙𝑑 − 𝑞
∂ 𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏

∂ 𝑏

(1) Assign the weights 𝑤 randomly
(2) Repeat until convergence

if the examples are linearly separable then the above model
classifies the points

To train a perceptron

Training Perceptron

𝑤𝑛𝑒𝑤: = 𝑤𝑜𝑙𝑑 − 𝑞𝑦𝑖𝑥𝑖

𝑒𝑟𝑟𝑜𝑟 𝑤, 𝑏 ≔ − 𝑀 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏0

𝑏𝑛𝑒𝑤: = 𝑏𝑜𝑙𝑑 − 𝑞𝑥𝑖

(1) Assign the weights 𝑤 randomly
(2) Repeat until convergence

if the examples are linearly separable then the above model
classifies the points

Stochastic gradient decent

To train a perceptron

Neural Network

Perceptron is the building block of a neural network. Clearly there are some data that cannot be classified
using a single perceptron.

The idea of neural network is to stack together multiple layers of perceptrons in order to be able to learn
more complicated functions

Neural Network

Mathematically, a neural network is a function f that takes x as input and produces an output y=f(x)

Neural Network

Mathematically, a neural network is a function f that takes x as input and produces an output y=f(x)

The training of a neural network means to tune the weights in all layers so that the output of the function f matches
the label of x. The process of updating the weights for a feedforward neural network is called backpropagation.

Feedforward Neural Network

How do we compute a feedforward neural network on an input x ?

𝑥 = 𝑎(0) σ(𝑊(1)𝑎(0)+𝑏(1))
𝑎(1)

σ(𝑊(2)𝑎(1)+𝑏(2))
𝑎(2)

σ(𝑊(3)𝑎(2)+𝑏(3))

𝑎(𝑛)=yσ(𝑊(𝑛)𝑎(𝑛−1)+𝑏(𝑛))

𝑊(1) : Edges between
layer 0 and layer 1

𝑎(0) : input
𝑏(1) : biases applied to layer 1
σ : activation function

Feedforward Neural Network

Start with an input 𝑥 = 𝑎(0). In the picture, this is represented by the first layer of nodes. We will call this layer 0.

𝑥 = 𝑎(0) σ(𝑊(1)𝑎(0)+𝑏(1))
𝑎(1)

σ(𝑊(2)𝑎(1)+𝑏(2))
𝑎(2)

σ(𝑊(3)𝑎(2)+𝑏(3))

𝑎(𝑛)=yσ(𝑊(𝑛)𝑎(𝑛−1)+𝑏(𝑛))

𝑊(1) : Edges between
layer 0 and layer 1

𝑎(0) : input
𝑏(1) : biases applied to layer 1
σ : activation function

Feedforward Neural Network

We apply the weight 𝑊(1) coming from the edges between layer 0 and layer 1 and add the biases and then apply the
Activation function on the resulting vector coordinate-wise.

𝑥 = 𝑎(0) σ(𝑊(1)𝑎(0)+𝑏(1))
𝑎(1)

σ(𝑊(2)𝑎(1)+𝑏(2))
𝑎(2)

σ(𝑊(3)𝑎(2)+𝑏(3))

𝑎(𝑛)=yσ(𝑊(𝑛)𝑎(𝑛−1)+𝑏(𝑛))

𝑊(1) : Edges between
layer 0 and layer 1

𝑎(0) : input
𝑏(1) : biases applied to layer 1
σ : activation function

Feedforward Neural Network

We will call the output of this computation 𝑎(1). This is now represented by the nodes in layer 1.

𝑥 = 𝑎(0) σ(𝑊(1)𝑎(0)+𝑏(1))
𝑎(1)

σ(𝑊(2)𝑎(1)+𝑏(2))
𝑎(2)

σ(𝑊(3)𝑎(2)+𝑏(3))

𝑎(𝑛)=yσ(𝑊(𝑛)𝑎(𝑛−1)+𝑏(𝑛))

𝑊(1) : Edges between
layer 0 and layer 1

𝑎(0) : input
𝑏(1) : biases applied to layer 1
σ : activation function

Feedforward Neural Network

Repeat.

𝑥 = 𝑎(0) σ(𝑊(1)𝑎(0)+𝑏(1))
𝑎(1)

σ(𝑊(2)𝑎(1)+𝑏(2))
𝑎(2)

σ(𝑊(3)𝑎(2)+𝑏(3))

𝑎(𝑛)=yσ(𝑊(𝑛)𝑎(𝑛−1)+𝑏(𝑛))

𝑊(2) : Edges between
layer 1 and layer 2

𝑎(1) : input from layer 1
𝑏(2) : biases applied to layer 2
σ : activation function

Feedforward Neural Network

Until you finish the neural network and get the final output.

𝑥 = 𝑎(0) σ(𝑊(1)𝑎(0)+𝑏(1))
𝑎(1)

σ(𝑊(2)𝑎(1)+𝑏(2))
𝑎(2)

σ(𝑊(3)𝑎(2)+𝑏(3))

𝑎(𝑛)=yσ(𝑊(𝑛)𝑎(𝑛−1)+𝑏(𝑛))

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output
that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not
be useful with the initial random weight.

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output
that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not
be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training
the network.

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output
that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not
be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training
the network.

How do we adjust the weights ? As before, we define a notion of cost function (which will be a function with respect
to all weights in the neural network) and then we try to minimize that function using the gradient decent algorithm

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output
that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not
be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training
the network.

How do we adjust the weights ? As before, we define a notion of cost function (which will be a function with respect
to all weights in the neural network) and then we try to minimize that function using the gradient decent algorithm

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output
that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not
be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training
the network.

How do we adjust the weights ? As before, we define a notion of cost function (which will be a function with respect
to all weights in the neural network) and then we try to minimize that function using the gradient decent algorithm

The process of updating the weights for a feedforward neural network is called backpropagation.
Which we will present next.

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗

𝑧𝑖 = σ(𝑎𝑖) where σ is smooth function

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑢𝑖𝑙 𝑢𝑗𝑖

Suppose that we have 𝑥𝑖 , 𝑦𝑖
𝑛
𝑖=1 . We want to train the neural network so that it classifies the data. Suppose we

have only a single output and denote that by 𝑦′.
In other words, 𝑦′ is the answer generated by the network and 𝑦 is the desired output. For simplicity suppose that the
cost function is 𝐶0 = 𝑦 − 𝑦

′ 2.

To understand backpropagation we will consider the following simplified neural network:

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗

𝑧𝑖 = σ(𝑎𝑖) where σ is smooth function

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑢𝑖𝑙 𝑢𝑗𝑖

Suppose that we have 𝑥𝑖 , 𝑦𝑖
𝑛
𝑖=1 . We want to train the neural network so that it classifies the data. Suppose we

have only have a single output and denote that by 𝑦′.
In other words, 𝑦′ is the answer generated by the network and 𝑦 is the desired output. For simplicity suppose that the
cost function is 𝐶0 = 𝑦 − 𝑦

′ 2.

To understand backpropagation we will consider the following simplified neural network:

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Recall :

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Recall :

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Recall :

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Recall :

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Recall :

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Recall :

This explains the variable dependency.

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Recall :

This explains the variable dependency.

We now can take the derivative of 𝐶0 with respect to a specific
weight 𝑢𝑖𝑙

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Recall :

Chain rule

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Recall :

Chain rule

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

We do not know
∂ 𝐶0
∂ 𝑎𝑖

so we call it for now 𝛿𝑖

𝐶0 = 𝑦 − 𝑦
′ 2.

∂ 𝐶0
∂ 𝑢𝑖𝑙

Goal : compute

Recall :

Chain rule

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

Backpropagation

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′(𝑎𝑖) 𝑗 𝛿𝑗𝑢𝑗𝑖

Hence

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′(𝑎𝑖) 𝑗 𝛿𝑗𝑢𝑗𝑖

Hence

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

Want to compute
∂ 𝐶0
∂ 𝑎𝑖

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗

∂ 𝐶0
∂ 𝑎𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗
∂ 𝑎𝑗
∂ 𝑎𝑖

∂ 𝑎𝑗

∂ 𝑎𝑖
=

∂ 𝑎𝑗

∂ 𝑧𝑖

∂ 𝑧𝑖
∂ 𝑎𝑖
= 𝑢𝑗𝑖σ

′(𝑎𝑖)

𝐶0 = 𝑦 − 𝑦
′ 2.

where

∂ 𝐶0
∂ 𝑎𝑖
= 𝑗 𝛿𝑗

∂ 𝑎𝑗
∂ 𝑎𝑖

= 𝑗 𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′(𝑎𝑖) 𝑗 𝛿𝑗𝑢𝑗𝑖

Hence

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′(𝑎𝑖)

𝑗

𝛿𝑗𝑢𝑗𝑖

If we have the 𝛿𝑗 we can compute 𝛿𝑖 hence the name backpropagation

𝐶0 = 𝑦 − 𝑦
′ 2.

In summary

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′(𝑎𝑖)

𝑗

𝛿𝑗𝑢𝑗𝑖

If we have the 𝛿𝑗 we can compute 𝛿𝑖 hence the name backpropagation

𝐶0 = 𝑦 − 𝑦
′ 2.

In summary

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′(𝑎𝑖)

𝑗

𝛿𝑗𝑢𝑗𝑖

If we have the 𝛿𝑗 we can compute 𝛿𝑖 hence the name backpropagation

𝐶0 = 𝑦 − 𝑦
′ 2.

In summary

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙
= 𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′(𝑎𝑖)

𝑗

𝛿𝑗𝑢𝑗𝑖

If we have the 𝛿𝑗 we can compute 𝛿𝑖 hence the name backpropagation

𝐶0 = 𝑦 − 𝑦
′ 2.

In summary

where

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

= 𝛿𝑖𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′ 𝑎𝑖

𝑗

𝛿𝑗𝑢𝑗𝑖 (∗)

𝛿𝑘 =
∂ 𝐶0
∂ 𝑦′
=

∂ 𝑦 − 𝑦′ 2

∂ 𝑦′
= −2(𝑦 − 𝑦′)

𝑦′

𝑘

Knowing 𝛿𝑘, we can compute all the 𝛿ℎ that comes before it using the formula (*)

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝐶0 = 𝑦 − 𝑦
′ 2.

Output layer

𝑘

𝑎𝑘 𝑧𝑘

𝑧𝑘 = 𝑦
′

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

= 𝛿𝑖𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′ 𝑎𝑖

𝑗

𝛿𝑗𝑢𝑗𝑖 (∗)

𝛿𝑘 =
∂ 𝐶0
∂ 𝑎𝑘
=

∂ 𝑦 − 𝑦′ 2

∂ 𝑦′
= −2(𝑦 − 𝑦′)

𝑦′

𝑘

Knowing 𝛿𝑘, we can compute all the 𝛿ℎ that comes before it using the formula (*)

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝐶0 = 𝑦 − 𝑦
′ 2.

Output layer

Compute

𝑘

𝑎𝑘 𝑧𝑘

σ(𝑎𝑘) = 𝑧𝑘 = 𝑦
′

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

= 𝛿𝑖𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′ 𝑎𝑖

𝑗

𝛿𝑗𝑢𝑗𝑖 (∗)

𝛿𝑘 =
∂ 𝐶0
∂ 𝑎𝑘
=

∂ 𝐶0
∂𝑧𝑘

∂𝑧𝑘
∂𝑎𝑘
=

∂ 𝐶0
∂ 𝑦′

∂𝑦′

∂𝑎𝑘
=

∂ 𝑦 − 𝑦′ 2

∂ 𝑦′
σ′ 𝑎𝑘 = −2(𝑦 − 𝑦

′)σ′ 𝑎𝑘

𝑦′

𝑘

Knowing 𝛿𝑘, we can compute all the 𝛿ℎ that comes before it using the formula (*)

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝐶0 = 𝑦 − 𝑦
′ 2.

Output layer

𝑎𝑘 𝑧𝑘

σ(𝑎𝑘) = 𝑧𝑘 = 𝑦
′

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

= 𝛿𝑖𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′ 𝑎𝑖

𝑗

𝛿𝑗𝑢𝑗𝑖 (∗)

𝛿𝑘 =
∂ 𝐶0
∂ 𝑎𝑘
=

∂ 𝐶0
∂𝑧𝑘

∂𝑧𝑘
∂𝑎𝑘
=

∂ 𝐶0
∂ 𝑦′

∂𝑦′

∂𝑎𝑘
=

∂ 𝑦 − 𝑦′ 2

∂ 𝑦′
σ′ 𝑎𝑘 = −2(𝑦 − 𝑦

′)σ′ 𝑎𝑘

𝑦′

𝑘

Knowing 𝛿𝑘, we can compute all the 𝛿ℎ that comes before it using the formula (*)

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝐶0 = 𝑦 − 𝑦
′ 2.

Output layer

𝑎𝑘 𝑧𝑘

σ(𝑎𝑘) = 𝑧𝑘 = 𝑦
′

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

= 𝛿𝑖𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′ 𝑎𝑖

𝑗

𝛿𝑗𝑢𝑗𝑖 (∗)

𝛿𝑘 =
∂ 𝐶0
∂ 𝑎𝑘
=

∂ 𝐶0
∂𝑧𝑘

∂𝑧𝑘
∂𝑎𝑘
=

∂ 𝐶0
∂ 𝑦′

∂𝑦′

∂𝑎𝑘
=

∂ 𝑦 − 𝑦′ 2

∂ 𝑦′
σ′ 𝑎𝑘 = −2(𝑦 − 𝑦

′)σ′ 𝑎𝑘

𝑦′

𝑘

Knowing 𝛿𝑘, we can compute all the 𝛿ℎ that comes before it using the formula (*)

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝐶0 = 𝑦 − 𝑦
′ 2.

Output layer

𝑎𝑘 𝑧𝑘

σ(𝑎𝑘) = 𝑧𝑘 = 𝑦
′

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

= 𝛿𝑖𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′ 𝑎𝑖

𝑗

𝛿𝑗𝑢𝑗𝑖 (∗)

𝛿𝑘 =
∂ 𝐶0
∂ 𝑎𝑘
=

∂ 𝐶0
∂𝑧𝑘

∂𝑧𝑘
∂𝑎𝑘
=

∂ 𝐶0
∂ 𝑦′

∂𝑦′

∂𝑎𝑘
=

∂ 𝑦 − 𝑦′ 2

∂ 𝑦′
σ′ 𝑎𝑘 = −2(𝑦 − 𝑦

′)σ′ 𝑎𝑘

𝑦′

𝑘

Knowing 𝛿𝑘, we can compute all the 𝛿ℎ that comes before it using the formula (*)

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝐶0 = 𝑦 − 𝑦
′ 2.

Output layer

𝑎𝑘 𝑧𝑘

σ(𝑎𝑘) = 𝑧𝑘 = 𝑦
′

Backpropagation

𝑙 𝑖 𝑗

𝑎𝑙 𝑧𝑙 𝑎𝑖 𝑧𝑖 𝑎𝑗 𝑧𝑗
𝑢𝑖𝑙

𝐶0

𝑧𝑗

𝑢𝑗𝑖

𝑢𝑗𝑖

𝑎𝑖

∂ 𝐶0
∂ 𝑢𝑖𝑙
=

∂ 𝐶0
∂ 𝑎𝑖

∂ 𝑎𝑖
∂ 𝑢𝑖𝑙

= 𝛿𝑖𝑧𝑙

𝑎𝑗

𝑧𝑖

𝑢𝑖𝑙𝑧𝑙

𝛿𝑖 =
∂ 𝐶0
∂ 𝑎𝑖
=

𝑗

𝛿𝑗𝑢𝑗𝑖σ
′(𝑎𝑖) = σ′ 𝑎𝑖

𝑗

𝛿𝑗𝑢𝑗𝑖 (∗)

𝛿𝑘 =
∂ 𝐶0
∂ 𝑎𝑘
=

∂ 𝐶0
∂𝑧𝑘

∂𝑧𝑘
∂𝑎𝑘
=

∂ 𝐶0
∂ 𝑦′

∂𝑦′

∂𝑎𝑘
=

∂ 𝑦 − 𝑦′ 2

∂ 𝑦′
σ′ 𝑎𝑘 = −2(𝑦 − 𝑦

′)σ′ 𝑎𝑘

𝑦′

𝑘

Knowing 𝛿𝑘, we can compute all the 𝛿ℎ that comes before it using the formula (*)

𝑧𝑖 = σ(𝑎𝑖)

𝑎𝑖 =

𝑙

𝑢𝑖𝑙𝑧𝑙

𝐶0 = 𝑦 − 𝑦
′ 2.

Output layer

𝑎𝑘 𝑧𝑘

σ(𝑎𝑘) = 𝑧𝑘 = 𝑦
′

Backpropagation Algorithm

(1) Arbitrary choose the weights randomly
(2) For each 𝑥𝑘 in the training example set:

(1) Feedforward: Apply 𝑥𝑘 to the neural network and compute the output 𝑦𝑘
′

(2) Compute 𝛿𝑘= −2(𝑦 − 𝑦
′)σ′ 𝑎𝑘

(3) Compute each of 𝛿𝑖 = σ′ 𝑎𝑖 𝑗 𝛿𝑗𝑢𝑗𝑖

(4) Compute
∂ 𝐶0
∂ 𝑢𝑖𝑙
= 𝛿𝑖𝑧𝑙

(5) Gradient decent : Update the weights 𝑢𝑖𝑙:=𝑢𝑖𝑙-q
∂ 𝐶0
∂ 𝑢𝑖𝑙

It is usually good to initiate the weights to small values.

Input a set of examples 𝑥𝑖 , 𝑦𝑖
𝑛
𝑖=1

