The Backpropagation Algorithm

MUSTAFA HAJIJ

Perceptron

Perceptron

b is called a bias term.

Perceptron

Training Perceptron

Given a collection of points $\left(x_{1}, y_{1}\right), \ldots .,\left(x_{n}, y_{n}\right)$ where
x_{i} is a points in R^{d} and y_{i} is a label that takes values in $\{-1,+1\}$

Training Perceptron

Given a collection of points $\left(x_{1}, y_{1}\right), \ldots .,\left(x_{n}, y_{n}\right)$ where
x_{i} is a points in R^{d} and y_{i} is a label that takes values in $\{-1,+1\}$
We want to choose $w=\left[w_{1}, \ldots w_{d}\right]$ and b such that the hyperplane determined by the $w x+b=0$ separates the points x_{i} according to their labels. In other words, we want to choose the plane $w x+b=0$ so that all points with positive sign on one side and all points with negative sign on the other side.

Training Perceptron

Given a collection of points $\left(x_{1}, y_{1}\right), \ldots .,\left(x_{n}, y_{n}\right)$ where
x_{i} is a points in R^{d} and y_{i} is a label that takes values in $\{-1,+1\}$

We want to choose $w=\left[w_{1}, \ldots w_{d}\right]$ and b such that the hyperplane determined by the $w x+b=0$ separates the points x_{i} according to their labels. In other words, we want to choose the plane $w x+b=0$ so that all points with positive sign on one side and all points with negative sign on the other side.

As usual we have to define a cost function and a notion of error.

General Gradient Decent Algorithm

First we will need to know what gradient decent means.

Suppose that we are given a differentiable function $f\left(w_{1}, \ldots, w_{d}\right)$

General Gradient Decent Algorithm

First we will need to know what gradient decent means.

Suppose that we are given a differentiable function $f\left(w_{1}, \ldots, w_{d}\right)$

Want to find w_{1}, \ldots, w_{d} such that $f\left(w_{1}, \ldots, w_{d}\right)$ is minimal

General Gradient Decent Algorithm

First we will need to know what gradient decent means.

Suppose that we are given a differentiable function $f\left(w_{1}, \ldots, w_{d}\right)$

Want to find w_{1}, \ldots, w_{d} such that $f\left(w_{1}, \ldots, w_{d}\right)$ is minimal. Gradient decent gives a way to find a local minimal for f

General Gradient Decent Algorithm

First we will need to know what gradient decent means.

Suppose that we are given a differentiable function $f\left(w_{1}, \ldots, w_{d}\right)$

Want to find w_{1}, \ldots, w_{d} such that $f\left(w_{1}, \ldots, w_{d}\right)$ is minimal. Gradient decent gives a way to find a local minimal for f

Outline :
(1) Initiate w_{1}, \ldots, w_{d} randomly
(2) keep changing w_{1}, \ldots, w_{d} until hopefully $f\left(w_{1}, \ldots, w_{d}\right)$ is minimal

General Gradient Decent Algorithm

First we will need to know what gradient decent means.

Suppose that we are given a differentiable function $f\left(w_{1}, \ldots, w_{d}\right)$

Want to find w_{1}, \ldots, w_{d} such that $f\left(w_{1}, \ldots, w_{d}\right)$ is minimal. Gradient decent gives a way to find a local minimal for f

Outline :
(1) Initiate w_{1}, \ldots, w_{d} randomly
(2) keep changing w_{1}, \ldots, w_{d} until hopefully $f\left(w_{1}, \ldots, w_{d}\right)$ is minimal

But how exactly do we change w_{1}, \ldots, w_{d} ?

General Gradient Decent Algorithm

Key idea : gradient of f goes in the direction at which f maximally change.

General Gradient Decent Algorithm

Key idea : gradient of f goes in the direction at which f maximally change.
(1) Initiate w_{1}, \ldots, w_{d} randomly

General Gradient Decent Algorithm

Key idea : gradient of f goes in the direction at which f maximally change.
(1) Initiate w_{1}, \ldots, w_{d} randomly
(2) Repeat until convergence :
(1) For every i in range $(1, d)$:

$$
\text { (1) } w_{i}:=w_{i}-q \frac{\partial f}{\partial w_{i}} \text { (here we do simultaneous update for the parameters } w_{i} \text {) }
$$

General Gradient Decent Algorithm

Key idea : gradient of f goes in the direction at which f maximally change.
(1) Initiate w_{1}, \ldots, w_{d} randomly
(2) Repeat until convergence :
(1) For every i in range $(1, d)$:

$$
\text { (1) } w_{i}:=w_{i}-q \frac{\partial f}{\partial w_{i}} \text { (here we do simultaneous update for the parameters } w_{i} \text {) }
$$

Gradient decent asserts that the values of the function f when we update as described above are non-increasing :

$$
f\left(\text { old } w_{i}\right) \geq f\left(\text { new } w_{i}\right)
$$

Training Perceptron

Now back to training a perceptron. We need some facts.

Training Perceptron

Now back to training a perceptron. We need some facts.
For any points x_{1} and x_{2} on the plane $w^{T} x+b=0$, we have

Training Perceptron

Now back to training a perceptron. We need some facts.
For any points x_{1} and x_{2} on the plane $w^{T} x+b=0$, we have

$$
w^{T} x_{1}+b=w^{T} x_{2}+b=0
$$

Training Perceptron

Now back to training a perceptron. We need some facts.
For any points x_{1} and x_{2} on the plane $w^{T} x+b=0$, we have

$$
w^{T} x_{1}+b=w^{T} x_{2}+b=0
$$

Hence

Training Perceptron

Now back to training a perceptron. We need some facts.
For any points x_{1} and x_{2} on the plane $w^{T} x+b=0$, we have

$$
w^{T} x_{1}+b=w^{T} x_{2}+b=0
$$

Hence
$w^{T}\left(x_{1}-x_{2}\right)=0$
Hence the vector w^{T} is orthogonal to $\left(x_{1}-x_{2}\right)$

Training Perceptron

Now back to training a perceptron. We need some facts.
For any points x_{1} and x_{2} on the plane $w^{T} x+b=0$, we have

$$
w^{T} x_{1}+b=w^{T} x_{2}+b=0
$$

Hence
$w^{T}\left(x_{1}-x_{2}\right)=0$
Hence the vector w^{T} is orthogonal to $\left(x_{1}-x_{2}\right)$
Moreover, for any x_{0} on the plane $w^{T} x+b=0$ we have

$$
b=-w^{T} x_{0}
$$

Training Perceptron

$$
d=w^{T}\left(x^{\prime}-x_{0}\right)=w^{T} x^{\prime}-w^{T} x_{0}=w^{T} x^{\prime}+b
$$

Training Perceptron

$$
d=w^{T}\left(x^{\prime}-x_{0}\right)=w^{T} x^{\prime}-w^{T} \mathbf{x}_{0}=w^{T} x^{\prime}+b
$$

So if we have a point and we want to see where it is located on with respect to the plan, then all we have to do is to plug it in the equation of the plane.

Training Perceptron

Write

$$
d_{i}=y_{i}\left(w^{T} x_{i}+b\right)
$$

Where $\left(x_{i}, y_{i}\right)$ is a training example

[^0]

Training Perceptron

Define

$$
\operatorname{error}(w, b):=-\sum_{M} y_{i}\left(w^{T} x_{i}+b_{0}\right)
$$

Training Perceptron

Define

$$
\operatorname{error}(w, b):=-\sum_{M} y_{i}\left(w^{T} x_{i}+b_{0}\right)
$$

Where M is the set of misclassified points

Training Perceptron

Define

$$
\operatorname{error}(w, b):=-\sum_{M} y_{i}\left(w^{T} x_{i}+b_{0}\right)
$$

Where M is the set of misclassified points

We want to apply gradient decent on the function $\operatorname{error}(w, b)$

$$
\begin{aligned}
& \frac{\partial \operatorname{error}(w, b)}{\partial w}=\sum_{M} y_{i} x_{i} \\
& \frac{\partial \operatorname{error}(w, b)}{\partial b}=\sum_{M} y_{i}
\end{aligned}
$$

Training Perceptron

To train a perceptron
(1) Assign the weights w randomly

Training Perceptron

To train a perceptron
(1) Assign the weights w randomly
(2) Repeat until convergence

Training Perceptron

To train a perceptron
(1) Assign the weights w randomly
(2) Repeat until convergence

$$
\begin{aligned}
& w_{\text {new }}:=w_{\text {old }}-q \frac{\partial \operatorname{error}(w, b)}{\partial w} \\
& b_{\text {new }}:=b_{\text {old }}-q \frac{\partial \operatorname{error}(w, b)}{\partial b}
\end{aligned}
$$

Training Perceptron

To train a perceptron
(1) Assign the weights w randomly
(2) Repeat until convergence

$$
\begin{aligned}
& w_{\text {new }}:=w_{\text {old }}-q \frac{\partial \operatorname{error}(w, b)}{\partial w} \\
& b_{\text {new }}:=b_{\text {old }}-q \frac{\partial \operatorname{error}(w, b)}{\partial b}
\end{aligned}
$$

if the examples are linearly separable then the above model classifies the points

Training Perceptron

To train a perceptron
(1) Assign the weights w randomly
(2) Repeat until convergence

$$
\begin{gathered}
w_{\text {new }}:=w_{\text {old }}-q y_{i} x_{i} \\
b_{\text {new }}:=b_{\text {old }}-q x_{i}
\end{gathered}
$$

if the examples are linearly separable then the above model classifies the points

Stochastic gradient decent

Neural Network

Perceptron is the building block of a neural network. Clearly there are some data that cannot be classified using a single perceptron.

The idea of neural network is to stack together multiple layers of perceptrons in order to be able to learn more complicated functions
hidden layer

Neural Network

Mathematically, a neural network is a function f that takes x as input and produces an output $y=f(x)$

hidden layer

Neural Network

Mathematically, a neural network is a function f that takes x as input and produces an output $y=f(x)$
The training of a neural network means to tune the weights in all layers so that the output of the function f matches the label of x. The process of updating the weights for a feedforward neural network is called backpropagation.

hidden layer

Feedforward Neural Network

How do we compute a feedforward neural network on an input x ?

Feedforward Neural Network

Start with an input $x=a^{(0)}$. In the picture, this is represented by the first layer of nodes. We will call this layer 0 .

$$
x=a^{(0)}
$$

Feedforward Neural Network

We apply the weight $W^{(1)}$ coming from the edges between layer 0 and layer 1 and add the biases and then apply the Activation function on the resulting vector coordinate-wise.

$$
x=a^{(0)} \longrightarrow \sigma\left(W^{(1)} a^{(0)}+b^{(1)}\right)
$$

$W^{(1)}$: Edges between
layer 0 and layer 1
$a^{(0)}$: input
$b^{(1)}$: biases applied to layer 1
σ : activation function

Feedforward Neural Network

We will call the output of this computation $a^{(1)}$. This is now represented by the nodes in layer 1 .

$$
x=a^{(0)} \longrightarrow \sigma\left(W^{(1)} a^{(0)}+b^{(1)}\right) \quad a^{(1)}
$$

Feedforward Neural Network

Repeat.

$W^{(2)}$: Edges between
layer 1 and layer 2
$a^{(1)}$: input from layer 1
$b^{(2)}$: biases applied to layer 2
σ : activation function

Feedforward Neural Network

Until you finish the neural network and get the final output.

$$
\begin{aligned}
& x=a^{(0)} \longrightarrow \sigma\left(W^{(1)} a^{(0)}+b^{(1)}\right) \xrightarrow{a^{(1)}} \sigma\left(W^{(2)} a^{(1)}+b^{(2)}\right) \xrightarrow{a^{(2)}} \quad \sigma\left(W^{(3)} a^{(2)}+b^{(3)}\right) \quad-\cdots \cdots \\
& -\cdots-\cdots-\cdots \quad \sigma\left(W^{(n)} a^{(n-1)}+b^{(n)}\right) \longrightarrow a^{(n)}=y
\end{aligned}
$$

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much more complicated decision boundary which ultimately give us more ability to classify data.

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.
The advantages of the neural network over the perceptron is that neural network would be able to define a much more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not be useful with the initial random weight.

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.
The advantages of the neural network over the perceptron is that neural network would be able to define a much more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training the network.

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training the network.

How do we adjust the weights? As before, we define a notion of cost function (which will be a function with respect to all weights in the neural network) and then we try to minimize that function using the gradient decent algorithm

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training the network.

How do we adjust the weights? As before, we define a notion of cost function (which will be a function with respect to all weights in the neural network) and then we try to minimize that function using the gradient decent algorithm

Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training the network.

How do we adjust the weights? As before, we define a notion of cost function (which will be a function with respect to all weights in the neural network) and then we try to minimize that function using the gradient decent algorithm

The process of updating the weights for a feedforward neural network is called backpropagation. Which we will present next.

Backpropagation

To understand backpropagation we will consider the following simplified neural network:

$z_{i}=\sigma\left(a_{i}\right)$ where σ is smooth function
$a_{i}=\sum_{l} u_{i l} z_{l}$

Backpropagation

To understand backpropagation we will consider the following simplified neural network:

$$
z_{i}=\sigma\left(a_{i}\right) \text { where } \sigma \text { is smooth function }
$$

$$
a_{i}=\sum_{l} u_{i l} z_{l}
$$

Suppose that we have $\left\{\left(x_{i}, y_{i}\right)\right\}^{n}{ }_{i=1}$. We want to train the neural network so that it classifies the data. Suppose we have only have a single output and denote that by y^{\prime}.
In other words, y^{\prime} is the answer generated by the network and y is the desired output. For simplicity suppose that the cost function is $C_{0}=\left(y-y^{\prime}\right)^{2}$.

Backpropagation

This explains the variable dependency.

Backpropagation

Goal : compute $\frac{\partial C_{0}}{\partial u_{i l}}$
Recall :
$z_{i}=\sigma\left(a_{i}\right)$
$a_{i}=\sum_{l} u_{i l} z_{l}$
We now can take the derivative of C_{0} with respect to a specific weight $u_{i l}$

This explains the variable dependency.

Backpropagation

Backpropagation

Backpropagation

We do not know $\frac{\partial C_{0}}{\partial a_{i}}$ so we call it for now δ_{i}

Backpropagation

Backpropagation

Backpropagation

Backpropagation

Backpropagation

Backpropagation

Backpropagation

$$
z_{i}=\sigma\left(a_{i}\right)
$$

$u_{j i}$

$$
\frac{\partial C_{0}}{\partial u_{i l}}=\frac{\partial C_{0}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{i l}} \quad \text { where } \quad \frac{\partial a_{i}}{\partial u_{i l}}=z_{l}
$$

$$
\text { Want to compute } \frac{\partial C_{0}}{\partial a_{i}}
$$

$$
\frac{\frac{\partial c_{0}}{\partial a_{i}}}{\frac{\partial a_{j}}{\partial a_{i}}}=\sum_{j} \frac{\partial c_{0}}{\partial a_{j}} \frac{\partial a_{j}}{\partial a_{i}}=\sum_{j} \delta_{j} \frac{\partial a_{j}}{\partial a_{i}}=\sum_{j} \delta_{j} \frac{\partial a_{j}}{\partial a_{i}}
$$

Backpropagation

$$
\frac{\partial c_{0}}{\partial a_{i}}=\sum_{j} \delta_{j} \frac{\partial a_{j}}{\partial a_{i}}=\sum_{j} \delta_{j} u_{j i} \sigma^{\prime}\left(a_{i}\right)=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i}
$$

Backpropagation

Backpropagation

Backpropagation

$$
\begin{array}{ll}
\text { In summary } & \frac{\partial C_{0}}{\partial u_{i l}}=\frac{\partial C_{0}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{i l}} \\
\text { where } \quad & \frac{\partial a_{i}}{\partial u_{i l}}=z_{l} \\
& \delta_{i}=\frac{\partial C_{0}}{\partial a_{i}}=\sum_{j} \delta_{j} u_{j i} \sigma^{\prime}\left(a_{i}\right)=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i}
\end{array}
$$

$$
\begin{aligned}
z_{i} & =\sigma\left(a_{i}\right) \\
a_{i} & =\sum_{l} u_{i l} z_{l} \\
C_{0} & =\left(y-y^{\prime}\right)^{2} .
\end{aligned}
$$

$$
\begin{gathered}
z_{j} \\
\vdots \\
C_{0}
\end{gathered}
$$

Backpropagation

$$
\begin{array}{ll}
\text { In summary } & \frac{\partial C_{0}}{\partial u_{i l}}=\frac{\partial C_{0}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{i l}} \\
\text { where } \quad & \frac{\partial a_{i}}{\partial u_{i l}}=z_{l} \\
& \delta_{i}=\frac{\partial C_{0}}{\partial a_{i}}=\sum_{j} \delta_{j} u_{j i} \sigma^{\prime}\left(a_{i}\right)=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i}
\end{array}
$$

If we have the δ_{j} we can compute δ_{i} hence the name backpropagation

Backpropagation

Output layer

$$
\frac{\partial c_{0}}{\partial u_{i l}}=\frac{\partial c_{0}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{i l}}=\delta_{i} z_{l}
$$

$$
\begin{equation*}
\delta_{i}=\frac{\partial C_{0}}{\partial a_{i}}=\sum_{j} \delta_{j} u_{j i} \sigma^{\prime}\left(a_{i}\right)=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i} \tag{*}
\end{equation*}
$$

$$
\begin{aligned}
z_{i} & =\sigma\left(a_{i}\right) \\
a_{i} & =\sum_{l} u_{i l} z_{l} \\
C_{0} & =\left(y-y^{\prime}\right)^{2} \\
z_{k} & =y^{\prime}
\end{aligned}
$$

Backpropagation

Output layer

$$
\frac{\partial c_{0}}{\partial u_{i l}}=\frac{\partial c_{0}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{i l}}=\delta_{i} z_{l}
$$

$$
\begin{equation*}
\delta_{i}=\frac{\partial C_{0}}{\partial a_{i}}=\sum_{j} \delta_{j} u_{j i} \sigma^{\prime}\left(a_{i}\right)=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i} \tag{*}
\end{equation*}
$$

$$
\begin{aligned}
z_{i} & =\sigma\left(a_{i}\right) \\
a_{i} & =\sum_{l} u_{i l} z_{l} \\
C_{0} & =\left(y-y^{\prime}\right)^{2} . \\
\sigma\left(a_{k}\right) & =z_{k}=y^{\prime}
\end{aligned}
$$

Compute $\delta_{\widehat{\ell}}=\frac{\partial C_{0}}{\partial a_{k}}$

Backpropagation

Output layer

$$
\frac{\partial c_{0}}{\partial u_{i l}}=\frac{\partial c_{0}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{i l}}=\delta_{i} z_{l}
$$

$$
\begin{aligned}
z_{i} & =\sigma\left(a_{i}\right) \\
a_{i} & =\sum_{l} u_{i l} z_{l}
\end{aligned}
$$

$$
\begin{equation*}
\delta_{i}=\frac{\partial C_{0}}{\partial a_{i}}=\sum_{j} \delta_{j} u_{j i} \sigma^{\prime}\left(a_{i}\right)=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i} \tag{*}
\end{equation*}
$$

$$
C_{0}=\left(y-y^{\prime}\right)^{2}
$$

$$
\sigma\left(a_{k}\right)=z_{k}=y^{\prime}
$$

$$
\delta_{k}=\frac{\partial C_{0}}{\partial a_{k}}=\frac{\partial C_{0}}{\partial z_{k}} \frac{\partial z_{k}}{\partial a_{k}}
$$

Backpropagation

Output layer

$$
\frac{\partial c_{0}}{\partial u_{i l}}=\frac{\partial c_{0}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{i l}}=\delta_{i} z_{l}
$$

$$
\begin{equation*}
\delta_{i}=\frac{\partial C_{0}}{\partial a_{i}}=\sum_{j} \delta_{j} u_{j i} \sigma^{\prime}\left(a_{i}\right)=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i} \tag{*}
\end{equation*}
$$

$$
\begin{aligned}
z_{i} & =\sigma\left(a_{i}\right) \\
a_{i} & =\sum_{l} u_{i l} z_{l} \\
C_{0} & =\left(y-y^{\prime}\right)^{2} . \\
\sigma\left(a_{k}\right) & \left.=\left(z_{k}\right)=y^{\prime}\right)
\end{aligned}
$$

$$
\delta_{k}=\frac{\partial C_{0}}{\partial a_{k}}=\frac{\partial C_{0}}{\partial \mathscr{Z}_{k}} \frac{\partial \widetilde{Z_{k}}}{\partial a_{k}}=\frac{\partial C_{0}}{\partial\left(y^{\prime}\right)} \frac{\left.\partial y^{\prime}\right)}{\partial a_{k}}
$$

$$
C_{0}
$$

Backpropagation

Output layer

a_{j}

$$
\begin{align*}
& \frac{\partial c_{0}}{\partial u_{i l}}=\frac{\partial c_{0}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{i l}}=\delta_{i} z_{l} \\
& \delta_{i}=\frac{\partial C_{0}}{\partial a_{i}}=\sum_{j} \delta_{j} u_{j i} \sigma^{\prime}\left(a_{i}\right)=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i} \quad(*) \tag{*}\\
& \delta_{k}=\frac{\partial C_{0}}{\partial a_{k}}=\frac{\partial C_{0}}{\partial z_{k}} \frac{\partial z_{k}}{\partial a_{k}}=\frac{\partial C_{0}}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial a_{k}}=\frac{\partial\left(y-y^{\prime}\right)^{2}}{\partial y^{\prime}} \sigma^{\prime}\left(a_{k}\right)
\end{align*}
$$

$$
\begin{gathered}
z_{i}=\sigma\left(a_{i}\right) \\
a_{i}=\sum_{l} u_{i l} z_{l} \\
C_{0}=\left(y-y^{\prime}\right)^{2} \\
\sigma\left(a_{k}\right)=z_{k}=y^{\prime}
\end{gathered}
$$

Backpropagation

Output layer

$$
\begin{aligned}
& \delta_{i}=\frac{\partial C_{0}}{\partial a_{i}}=\sum_{j} \delta_{j} u_{j i} \sigma^{\prime}\left(a_{i}\right)=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i}(*) \\
& C_{0}=\left(y-y^{\prime}\right)^{2} \\
& \delta_{k}= \frac{\partial C_{0}}{\partial a_{k}}=\frac{\partial C_{0}}{\partial z_{k}} \frac{\partial z_{k}}{\partial a_{k}}=\frac{\left.\partial C_{0}\right)=z_{k}=y^{\prime}}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial a_{k}}=\frac{\partial\left(y-y^{\prime}\right)^{2}}{\partial y^{\prime}} \sigma^{\prime}\left(a_{k}\right)=-2\left(y-y^{\prime}\right) \sigma^{\prime}\left(a_{k}\right)
\end{aligned}
$$

Backpropagation

Output layer

$$
z_{i} \quad u_{j i}
$$

$$
\begin{array}{cc}
\frac{\partial c_{0}}{\partial u_{i l}}=\frac{\partial c_{0}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{i l}}=\delta_{i} z_{l} & a_{i}=\sum_{l} u_{i l} z_{l} \\
\delta_{i}=\frac{\partial C_{0}}{\partial a_{i}}=\sum_{j} \delta_{j} u_{j i} \sigma^{\prime}\left(a_{i}\right)=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i} & (*) \\
C_{0}=\left(y-y^{\prime}\right)^{2} . \\
\delta_{k}=\frac{\partial C_{0}}{\partial a_{k}}=\frac{\partial C_{0}}{\partial z_{k}} \frac{\partial z_{k}}{\partial a_{k}}=\frac{\left.\partial C_{0}\right)=z_{k}=y^{\prime}}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial a_{k}}=\frac{\partial\left(y-y^{\prime}\right)^{2}}{\partial y^{\prime}} \sigma^{\prime}\left(a_{k}\right)=-2\left(y-y^{\prime}\right) \sigma^{\prime}\left(a_{k}\right)
\end{array}
$$

Knowing δ_{k}, we can compute all the δ_{h} that comes before it using the formula (*)

Backpropagation Algorithm

Input a set of examples $\left\{\left(x_{i}, y_{i}\right)\right\}^{n}{ }_{i=1}$
(1) Arbitrary choose the weights randomly
(2) For each x_{k} in the training example set:
(1) Feedforward: Apply x_{k} to the neural network and compute the output y_{k}^{\prime}
(2) Compute $\delta_{k}=-2\left(y-y^{\prime}\right) \sigma^{\prime}\left(a_{k}\right)$
(3) Compute each of $\delta_{i}=\sigma^{\prime}\left(a_{i}\right) \sum_{j} \delta_{j} u_{j i}$
(4) Compute $\frac{\partial c_{0}}{\partial u_{i l}}=\delta_{i} z_{l}$
(5) Gradient decent: Update the weights $u_{i l}:=u_{i l}-\mathrm{q} \frac{\partial c_{0}}{\partial u_{i l}}$

It is usually good to initiate the weights to small values.

[^0]: Note that $d_{i} \geq 0$

