The Backpropagation Algorithm

MUSTAFA HAJIJ



Perceptron




Perceptron

ak

k
wW;Qa; + b
i=1

b is called a bias term.



Perceptron

. —>
/ 0(2 w;a; + b) -
i=1

activation function o




Perceptron

- ,
o( ) wia; +b) =oc(wla+ b)
)

activation function o




Training Perceptron

Given a collection, of points (x1,y4), ..., (X, ¥,,) Where
x; isapointsin R% and y; is a label that takes values in {—1,+1}



Training Perceptron

Given a collection, of points (x1,y4), ..., (X, ¥,,) Where
x; isapointsin R% and y; is a label that takes values in {—1,+1}

We want to choose w = [wy, ...w,;] and b such that the hyperplane determined by the wx + b = 0
separates the points x; according to their labels. In other words, we want to choose the plane wx + b =0
so that all points with positive sign on one side and all points with negative sign on the other side.



Training Perceptron

Given a collection, of points (x1,y4), ..., (X, ¥,,) Where
x; isapointsin R% and y; is a label that takes values in {—1,+1}

We want to choose w = [wy, ...w,;] and b such that the hyperplane determined by the wx + b = 0
separates the points x; according to their labels. In other words, we want to choose the plane wx + b =0
so that all points with positive sign on one side and all points with negative sign on the other side.

As usual we have to define a cost function and a notion of error.



General Gradient Decent Algorithm

First we will need to know what gradient decent means.

Suppose that we are given a differentiable function f(wy, ..., wy)



General Gradient Decent Algorithm

First we will need to know what gradient decent means.

Suppose that we are given a differentiable function f(wy, ..., wy)

Want to find wy, ..., wg such that f(wy, ..., wg) is minimal



General Gradient Decent Algorithm

First we will need to know what gradient decent means.

Suppose that we are given a differentiable function f(wy, ..., wy)

Want to find wy, ..., wy such that f(wy, ..., wy) is minimal. Gradient decent gives a way to find a local minimal for f



General Gradient Decent Algorithm

First we will need to know what gradient decent means.

Suppose that we are given a differentiable function f(wy, ..., wy)

Want to find wy, ..., wy such that f(wy, ..., wy) is minimal. Gradient decent gives a way to find a local minimal for f

Outline :

(1) Initiate wy, ..., w4 randomly
(2) keep changing wy, ..., w, until hopefully f(wy, ..., wy) is minimal



General Gradient Decent Algorithm

First we will need to know what gradient decent means.

Suppose that we are given a differentiable function f(wy, ..., wy)

Want to find wy, ..., wy such that f(wy, ..., wy) is minimal. Gradient decent gives a way to find a local minimal for f

Outline :

(1) Initiate wy, ..., w4 randomly
(2) keep changing wy, ..., w, until hopefully f(wy, ..., wy) is minimal

But how exactly do we change wy, ...,w,; ?



General Gradient Decent Algorithm

Key idea : gradient of f goes in the direction at which f maximally change.



General Gradient Decent Algorithm

Key idea : gradient of f goes in the direction at which f maximally change.

(1) Initiate wyq, ..., wz randomly



General Gradient Decent Algorithm

Key idea : gradient of f goes in the direction at which f maximally change.

(1) Initiate wy, ..., w4 randomly
(2) Repeat until convergence :
(1) For everyiinrange(1,d):

(Dw; == w; — q (?M]: (here we do simultaneous update for the parameters w; )

l



General Gradient Decent Algorithm

Key idea : gradient of f goes in the direction at which f maximally change.

(1) Initiate wy, ..., w4 randomly
(2) Repeat until convergence :
(1) For everyiinrange(1,d):

(Dw; == w; — q (?M]: (here we do simultaneous update for the parameters w; )

l
Gradient decent asserts that the values of the function f when we update as described above are non-increasing :

f(old w;) = f(new w;)



Training Perceptron

Now back to training a perceptron. We need some facts.



Training Perceptron

Now back to training a perceptron. We need some facts.

For any points x; and x, on the plane w’x + b = 0, we have



Training Perceptron

Now back to training a perceptron. We need some facts.

For any points x; and x, on the plane w’x + b = 0, we have

WTx1 + b:Wsz + b=0



Training Perceptron

Now back to training a perceptron. We need some facts.

For any points x; and x, on the plane w’x + b = 0, we have
WTx1 ~+ b:Wsz + b=0

Hence



Training Perceptron

Now back to training a perceptron. We need some facts.

For any points x; and x, on the plane w’x + b = 0, we have
wlx; + b=w'x, + b=0

Hence

w' (xq — x2)=0

Hence the vector w’ is orthogonal to (x; — x,)



Training Perceptron

Now back to training a perceptron. We need some facts.

For any points x; and x, on the plane w’x + b = 0, we have
wlx; + b=w'x, + b=0

Hence

wl(x; —x,)=0

Hence the vector w’ is orthogonal to (x; — x,)

Moreover, for any x, on the plane w'x + b = 0 we have

_ T
b=-w"x,



Training Perceptron

wix4+b=0

d=wl(x'"—x9) =wix'—wlxy =wix'"+b




Training Perceptron

wix4+b=0

d=wl(x'"—x9) =wix'—wlxy =wix'"+b

So if we have a point and we want to see where it is located on
with respect to the plan, then all we have to do is to plug it in
the equation of the plane.



Training Perceptron

Write

wlix+b=0
d; = y;(w'x; +b)

Where (x;, ;) is a training example

Note thatd; = 0



Training Perceptron

Define

error(w,b) == — Yy yi(w'x; + by)




Training Perceptron

Define

error(w,b) == — Yy yi(w'x; + by)

Where M is the set of misclassified points




Training Perceptron

Define

error(w,b) == — Yy yi(w'x; + by)

Where M is the set of misclassified points

We want to apply gradient decent on the function error(w, b)

0 error(w b)
z ylxl

0 error(w b)
-




Training Perceptron

To train a perceptron

(1) Assign the weights w randomly

error(w,b) = =Y, y;(W'x; + by )



Training Perceptron

To train a perceptron

(1) Assign the weights w randomly
(2) Repeat until convergence

error(w,b) = =Y, y;(W'x; + by )



Training Perceptron

To train a perceptron

(1) Assign the weights w randomly
(2) Repeat until convergence

0 error(w,b)

Whew: = Woid — 4 3w

0 error(w, b)
brew: = boia — q 3 b

error(w,b) = =Y, y;(W'x; + by )



Training Perceptron

To train a perceptron

(1) Assign the weights w randomly
(2) Repeat until convergence

0 error(w,b)

Whew: = Woid — 4 3w

0 error(w, b)
brew: = boia — q 3 b

if the examples are linearly separable then the above model
classifies the points

error(w,b) = =Y, y;(W'x; + by )



Training Perceptron

To train a perceptron

Stochastic gradient decent
(1) Assign the weights w randomly

(2) Repeat until convergence
Whew: = Woida — qYiXi

brew: = boia — qx;

if the examples are linearly separable then the above model
classifies the points

error(w,b) = =Y, y;(W'x; + by )



Neural Network

Perceptron is the building block of a neural network. Clearly there are some data that cannot be classified
using a single perceptron.

The idea of neural network is to stack together multiple layers of perceptrons in order to be able to learn
more complicated functions

hidden layer

input output layer



Neural Network

Mathematically, a neural network is a function f that takes x as input and produces an output y=f(x)

hidden layer

input output layer



Neural Network

Mathematically, a neural network is a function f that takes x as input and produces an output y=f(x)

The training of a neural network means to tune the weights in all layers so that the output of the function f matches
the label of x. The process of updating the weights for a feedforward neural network is called backpropagation.

hidden layer

input output layer



Feedforward Neural Network

How do we compute a feedforward neural network on an input x ?



Feedforward Neural Network

Start with an input x = a(9. In the picture, this is represented by the first layer of nodes. We will call this layer 0.

x = aq©



Feedforward Neural Network

We apply the weight W) coming from the edges between layer 0 and layer 1 and add the biases and then apply the
Activation function on the resulting vector coordinate-wise.

X = a(o) G(W(l)a(0)+b(1) )

W@ : Edges between

layer O and layer 1

a® :input

b : biases applied to layer 1
o : activation function



Feedforward Neural Network

We will call the output of this computation a(1. This is now represented by the nodes in layer 1.

ey
X = a(o) o(W(l)a(0)+b(1) )

W@ : Edges between

layer O and layer 1

a® :input

b : biases applied to layer 1
o : activation function



Feedforward Neural Network

Repeat.

x=a® | GW®a®4p®)

W) : Edges between

layer 1 and layer 2

a :input from layer 1

b2 : biases applied to layer 2
o : activation function

eH

o(W@aW4p(2))

e



Feedforward Neural Network

Until you finish the neural network and get the final output.

o(WDa®4p1))

eH

o(W@aW4p(2))

e

o(W®a@4pB)y) |- —-

(WM am=Dopm )| gy




Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.



Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output

that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not
be useful with the initial random weight.



Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output
that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not
be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training
the network.



Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output
that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not
be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training
the network.

How do we adjust the weights ? As before, we define a notion of cost function (which will be a function with respect
to all weights in the neural network) and then we try to minimize that function using the gradient decent algorithm



Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output
that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not
be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training
the network.

How do we adjust the weights ? As before, we define a notion of cost function (which will be a function with respect
to all weights in the neural network) and then we try to minimize that function using the gradient decent algorithm



Training a Neural Network

Now suppose that we are given a binary labeled data as before and we want to use neural network to classify this data.

The advantages of the neural network over the perceptron is that neural network would be able to define a much
more complicated decision boundary which ultimately give us more ability to classify data.

To start working with neural network we initiate the weight of the network randomly and then we test if the output
that we obtain from the network matches the label of the input. Most likely, the output obtained this way will not
be useful with the initial random weight.

We need to adjust the weights of the network so that it classifies the data correctly. This is what we mean by training
the network.

How do we adjust the weights ? As before, we define a notion of cost function (which will be a function with respect
to all weights in the neural network) and then we try to minimize that function using the gradient decent algorithm

The process of updating the weights for a feedforward neural network is called backpropagation.
Which we will present next.



Backpropagation

To understand backpropagation we will consider the following simplified neural network:

z; = o(a;) where o is smooth function

a; = 2 Ui1Z;

l



Backpropagation

To understand backpropagation we will consider the following simplified neural network:

Uj

uji

z; = o(a;) where o is smooth function

a; = 2 Ui1Z;

l

Suppose that we have {(x;,y;)}";_, . We want to train the neural network so that it classifies the data. Suppose we
have only have a single output and denote that by y’.

In other words, y' is the answer generated by the network and y is the desired output. For simplicity suppose that the
cost function is C, = (y — y")2.



Backpropagation

3 C,
0 Ui

Goal : compute



Backpropagation

u]'l'
Recall :
l i j z; = o(a;)
0 Cy
Goal : compute 5w, a; = Z Ui Z;

l
Co=(y—y')=



Backpropagation

uil ‘ ) ‘
L J

3 C,
0 Ui

Goal : compute

Recall :

z; = o(a;)

a; = Z Ui1Z;

l
Co=(y—y')=



Backpropagation

Z] /uil
a;
[
Zj

uil ‘ ) ‘
L J

3 C,
0 Ui

Goal : compute

Recall :

z; = o(a;)

a; = Z Ui1Z;

l
Co=(y—y')=



Backpropagation

Z] /uil
a;
[

uil ‘ ) ‘
L J

3 C,
0 Ui

Goal : compute

Recall :
z; = o(a;)
a; = Z U1y
l
Co= -y



Backpropagation

Z Ui
v/
[
Z; o
N/
a

uil ‘ ) ‘
L J

3 C,
0 Ui

Goal : compute

Recall :
z; = o(a;)
a; = Z U1y
l
Co= -y



Backpropagation

Z] Uijp
\/
aj
[
Z ) 0 Co
' Yji Goal : compute

\/

Co

This explains the variable dependency.

Recall :
z; = o(a;)
a; = Z U1y
l
Co= -y



Backpropagation

2] Ujp
\ / Ui Uj;
a;
[ l
Zi .. a CO

Goal : compute
P 6 ull

\ / We now can take the derivative of C, with respect to a specific

a; weight u;;

Co

This explains the variable dependency.

Recall :
z; = o(a;)
a; = Z U1y
l
Co= -y



Backpropagation

2] Ujp
\ / Y Uji
a;
I [
Z; § 0C
' Yji Goal : compute 0
\ / 0 U
6 CO 6 CO 6 al' )
a; Ouu__daiduu Chain rule
Zj

Recall :
z; = o(a;)
a; = Z U1y
l
Co= -y



Backpropagation

2] Ujp
\ / Y Uji
a;
l [
Z; § 0C
' Yji Goal : compute 0
\ / 0 U
6 CO 6 CO 6 al' )
a; Ouu__daiduu Chain rule
6 Cli /
=Z
Zj duy|

Recall :
z; = o(a;)
a; = Z U1y
l
Co= -y



Backpropagation

Goal : compute

3 C,
duil
GCO _OCOGCli
Ouil_daiduil
dai_‘/
duil_Zl

We do not know g

Chain rule

c .
~>so we call it for now §;

Ui Uj;
Recall :

= o(a;)

a; = Z Ui1Z;

l

= —-y)%



Backpropagation

Z] Ui
\ / Uj
a;
[
YA ..
‘ Y 3C, 9C,0da
\/ duil_daiduil
a;
Zj

z; = o(a;)
a; = Z U1y
]
Co= -y



Backpropagation

Z] Ui
\ / Yl Uji
a;
[ i j z; = o(a;)
A ..
‘ Yji dC, 0C,yda i d a a; = Z Uiz,
= =7
\ / duy OaPuy | o° duy| :
Co=(y—7v)2
a]_ o=0-y)
Zj



Backpropagation

Z| Uijp
I i j Zi = G(ai)
Z )
‘ Uji 0Co |0 Col0ay ] dai_z ai=2uilzl
\/ duy |daPu; "o duy :
Co= -y

a.
J Want to compute g Zo
Zj



Backpropagation

Z| /uil
aj
l i j z; = o(a;)
Z 3
‘ Uji 0Co |0 Col0ay ] dai_z ai=2uilzl
\/ duy |daPu; "o duy :
Co= -y
a; 0 Co
Want to compute da;
d ¢, 9 ¢, 0 aj
% a2 34,0 a




Backpropagation

Z| Uijp
l i j z; = o(a;)
Z g
‘ Yji 0Cy [0Cda; oai _ a; = Z Uiz,
\/ duy |0 ayduy duy l
/ ; Co= -y
J 906G
Want to compute 3,
| dc| « 0c0a 0 a;
Z] dai_zjdajdai_zj 6j6ai




Backpropagation

Z] Uijp
\/
l i j z; = o(a;)
Z .
‘ Yji 0Cy |0Colda i oai _ ai=2uilzl
\ / duy |O0aou; o duy :
/ ; Co=(—y)2
J 906G
Want to compute 3,
. aCO_ aCOOa]_ M_ aa]
Z] dai_zjdajdai_zj 616al_21 deai




Backpropagation

Z] Uijp
\/
l i j z; = o(a;)
Z .
‘ Yji 0Cy |0Colda i oai _ ai=2uilzl
\ / duy |O0aou; o duy :
/ ; Co=(—y)2
J 906G
Want to compute 3,
. aCO_ aCOOa]_ M_ aa]
Z] dai_zjdajdai_zj 616al_21 deai




Backpropagation

2 Uj;
\ / Ujp
a;
l i z; = o(a;)
Zj ..
l u]l GCO _OCOGai h dai _, aizzuilzl
\ / 0 Ui B 0 a; o) Ui where o) Ui L ]
a o) Co=(y— )”)2-
J 06
Want to compute 3,
. aCO_ acoaa] aa]_
Z.J 6ai_zjda]6al Z 6] Z 6
a
E o) a;
Co



Backpropagation

2 Uj;
\ / Ujp
a;
l i z; = o(a;)
— — Z
\ / 0 Ui 0 a; o) Ui where o) Ui L l
Co=0r—y)%
Y Want t tel 2 Co
ant to compute|y "
. aCO_ acoaa] aa]_
Z.J dai_zjaajﬁal Z 6] Z 6
:: o) Clj _ o) Clj 6@
: da;[ 0@ a;
Co



Backpropagation

Z Uy
\ / Uiy
a;
l i z; = o(a;)
< :> u_ii GCO_OCOGai h dai—Z aizzuilzl
\/ duy |0 a;duy WhETe duy l
Co=0r—y)%
a; 0 C,
Want to compute 3,
aCO | acoaa] _ M_
Z.j dai_zjaajdai_zj 6j6ai_zj 6]
:: o) aj _ o) aj a@
5 da;| | 0@ a;
Co



Backpropagation

2 Uj;
\ / Ujp
a;
l i z; = o(a;)
< :> u_ii GCO _ OCO aai Where dai _, ai =zuilzl
o) Ui 0 a; o) Ui o) Ui L l
a o) Co=(Qy— )”)2-
Y Co
Want to compute 3,
. (3 Co | (3 Co a Clj _ % _

Z.J dai_zjaajaai_zj 6j6ai_zj 6]

0a;| [0a;0@)
5 da;| |0@ED a;
Co | [o@pa




Backpropagation

2] Uj;
\ / Ujp
a;
l i z; = o(a;)
< :> u_ii GCO OCOGai h dai aizzuilzl
— — Z
\ / Ouy |0a;0uy WhETe duy l
Co=0r—y)%
a; Want t ‘ 0 C,
ant to compute|3 ”
. aCO | aC()aa] _ M_
Z.J dai_zjaajdai_zj 6j6ai_zj 6]
: 0 ¢/ [0afo@
: j j ,
- (3 ai (3 ai Jt
. @



Backpropagation

Z) Uj

| ; z; = o(a;)

L d0Co [0Col0ay ) dai_z aizzuilzl
\/ duy |oafou; Quy :
a Co=(—y)2
a; cy
Want to compute Ja;
0¢ | « 0¢0a; 04,

6 aj
Z_J' dai_zjdajdaizzj 6j6_611=2j 6j6ai
' da;| [dald
L= ] @ u;;0'(a;)
: da; d@qid a; Hence
Co 3
a CO 6 aj

aai:Zj 6j(3ai




Backpropagation

2] Uj;
\ / Ujp
a;
l i z; = o(a;)
< :> u_ii GCO OCOGai h dai aizzuilzl
— — Z
\ / 0 Ui 0 a; o) Ui where o) Ui L l
Co=0—-y)%
Y Want t tel 2 Co
ant to compute| 5 ”
. (3 Co | (3 Co a aj _ % _
Z.J dai_zjaajdai_zj 5jaai—2j 6f
: 0 ¢/ [0afo@
E o 6@;“6 i e Hence
Co I
a CO 6 a]

0 a; - Zj 6] ) ai._zj 5juji0,(ai)




Backpropagation

Z) Uj

= o(a;)

0C, |0Cy0a; da; a; = z Uiz

= = Z
\ / duy |dajouy VMe® Gy, 7
/ ; Co= -y
) Co
Want to compute Ja;
aCo_ dcoaaj Oaj aaj

[ [

Z_J' dai_zjdajdai=2j5] _Z 66ai

5 0a;| [0a;0@)

- ] ] ’

: = = u;;0' (q;

: 0 a@qi‘) a | (@) Hence

Co [
d ¢, 0 a;

o= 2 Sigary Swio' (@) =0'(a)X; Su;




Backpropagation

Z Ui
\ / tit Uji
a;
[ [ j z; = o(a;)
Zi U:: B
. Insummary 9 Co _ 0(p0aq; a; = Zuilzl
\/ Ou; 0a;0uy :
Co = -y
4
Zj



Backpropagation

Z| Uijp
\ / Ui Uj;
aj
l [
Zl u..
JiL
In summary 0 Cy _ 0 Cp 0 qy
o] Ui 0 a; o] Ui
a.
J o] a;
where = z;
o) Ui
Zj

z; = o(a;)
a; = Z U1y
]
Co= -y



Backpropagation

L J

In summary 0 Cy _ 0 Cp 0 a;
o] Ui 0 a; o] Ui

0 a;
where !

= Z
0 Ui

o)

C 14
6; = 3 a(-) = z djujio'(a;)) =o (ai)z oju;i
LT j

z; = o(a;)
a; = Z U1y
]
Co= -y



Backpropagation

Z Uy
\ / tit Uji
a;
[ j z; = o(a;)
zi " )
. Insummary 9 Co _ 0 Cp 0 a; a; = zuilzl
\ / 0 Ui o a; 0 U;j; l 2
a = -y)"
j .
where 0ai =z
0 Ui
7 3 C,
: 5= 3 z S (@) = o' (a) Z S

If we have the 5] we can compute §; hence the name backpropagation



Backpropagation

Output layer

L J

OCO_OCOOCli_
Ouil_ Oaiduil_6izl

0 Cy , ,
T = 0,0 @) =0'@) ) Sui ()
J J

6i=



Backpropagation

Z] Ui
\/
a;
l
Zj uji
N/
a;
Zj

Output layer

Uy Uj;
i J
6 Co _ 6 Co 6 a; _
6 Uil - 6 a; 6 Uil - Sizl
o] CO ' / "2
6; = d a: = Z Siuj;io'(a;) =0 (ai)z Oiuj; (*) Co=W-y)~
l ] ]
olay) =z =Yy’
Compute §p = _d Co

@ B o ay



Backpropagation

Output layer

uji
i J
z; = o(a;)
6 Co _ 6 Co 6 a _
0 Uil 0 ai 0 Uil - SiZl a; = Z Uj1Z;
l
o] CO ' / "2
6; = d a: = Z Siuj;io'(a;) =0 (ai)z Oiuj; (*) Co=W-y)~
l ] ]
olap) =zx =y’
0 CO o CO OZk
5k = =
0 ay dzk dak




Backpropagation

Output layer

Uj Uj;
i J
6 CO _ 6 Co 6 ai; _
6 Uil - 6 a; 6 Uil - Sizl
0

5i=

N\
*
\—/

Co =y —y">~

o(a) =@ =)

C
3 a(Z = Z ju;i0'(a;) = o'(a;) z 6juj;
J J

(Sk:acozaco@zac(,@
day  Ogp)day @aak




Backpropagation

Output layer

Z| Uijp
\ / Ujp uji
aj
| | k
[ l J
Zj Uj; Zi = G(ai)
6 CO _ 6 Co 6 ai; _ 6
Ouil_daiduil_ iZl , — ,
a; U2y
l
a; 0 Co : : ;
51' = 3a = Z (Sju]'iO' (al-) =0 (al-)z Sjuji (*) CO = (_’y -y )2.
LT j
z; o(ag) =z =y’

0C, 0C,0z, BColoy' | |0(y—v")? ,
= = = — o' (ai)

"~ da, Oz, 0a; |9 y’ldak 3y’

k




Backpropagation

Output layer

uji
. . k
i ]
z; = o(a;)
6 CO _ 6 Co 6 a _ )
o) Ujg -0 a;i 0 Ui B 612[ a; = Z Uj1Z;
]
_ 0 Cy B , o, 3
6; = Sa Sjujio’'(a;)) =o'(a) ) Sjuj; (%) Co=W-y)~
l . -
j j

!

o(ax) =2z =y

d0C, 0Cy0z, P Coloy' | [0y —y"A )
__>-0_~™0 _ [0 - o'(ay) = —2(y—y")o'(ay)

"~ da, Oz, 0a; |9 y’ldak 3y’

k




Backpropagation

Output layer

Uy Uj;
" ” k
[ ]
z; = o(a;)
6 Co _ 6 Co 6 a _
o) Ui 0 a;i 0 Ui B SiZl a; = Z Uj1Z;
l
o] CO ' / "2
6; = d a: = Z Siuj;io'(a;) =0 (ai)z Oiuj; (*) Co=W-y)~
l . -
J J

olay) =z =y’

1 9C, 3Cooz PGy | [0y —y1? N e
k_dak_dzkdak_dy’ldak_ 5y o @) F 20—y )olay

Knowing &, we can compute all the §; that comes before it using the formula (*)



Backpropagation Algorithm

Input a set of examples {(x;, y)}",_,

(1) Arbitrary choose the weights randomly

(2) For each xj, in the training example set:
(1) Feedforward: Apply xj to the neural network and compute the output y;,
(2) Compute &= —2(y —y")o'(ar)
(3) Compute each of §; = o'(a;) X; dju;

0Co
(4) Compute s 0iZ;

(5) Gradient decent : Update the weights u;;:=u;;-q _g ZO
il

It is usually good to initiate the weights to small values.



